Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, Nishtha Srivastava
{"title":"Earthquake monitoring using deep learning with a case study of the Kahramanmaras Turkey earthquake aftershock sequence","authors":"Wei Li, Megha Chakraborty, Jonas Köhler, Claudia Quinteros-Cartaya, Georg Rümpker, Nishtha Srivastava","doi":"10.5194/se-15-197-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Seismic phase picking and magnitude estimation are fundamental aspects of earthquake monitoring and seismic event analysis. Accurate phase picking allows for precise characterization of seismic wave arrivals, contributing to a better understanding of earthquake events. Likewise, accurate magnitude estimation provides crucial information about an earthquake's size and potential impact. Together, these components enhance our ability to monitor seismic activity effectively. In this study, we explore the application of deep-learning techniques for earthquake detection and magnitude estimation using continuous seismic recordings. Our approach introduces DynaPicker, which leverages dynamic convolutional neural networks to detect seismic body-wave phases in continuous seismic data. We demonstrate the effectiveness of DynaPicker using various open-source seismic datasets, including both window-format and continuous recordings. We evaluate its performance in seismic phase identification and arrival-time picking, as well as its robustness in classifying seismic phases using low-magnitude seismic data in the presence of noise. Furthermore, we integrate the phase arrival-time information into a previously published deep-learning model for magnitude estimation. We apply this workflow to continuous recordings of aftershock sequences following the Turkey earthquake. The results of this case study showcase the reliability of our approach in earthquake detection, phase picking, and magnitude estimation, contributing valuable insights to seismic event analysis.","PeriodicalId":21912,"journal":{"name":"Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/se-15-197-2024","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Seismic phase picking and magnitude estimation are fundamental aspects of earthquake monitoring and seismic event analysis. Accurate phase picking allows for precise characterization of seismic wave arrivals, contributing to a better understanding of earthquake events. Likewise, accurate magnitude estimation provides crucial information about an earthquake's size and potential impact. Together, these components enhance our ability to monitor seismic activity effectively. In this study, we explore the application of deep-learning techniques for earthquake detection and magnitude estimation using continuous seismic recordings. Our approach introduces DynaPicker, which leverages dynamic convolutional neural networks to detect seismic body-wave phases in continuous seismic data. We demonstrate the effectiveness of DynaPicker using various open-source seismic datasets, including both window-format and continuous recordings. We evaluate its performance in seismic phase identification and arrival-time picking, as well as its robustness in classifying seismic phases using low-magnitude seismic data in the presence of noise. Furthermore, we integrate the phase arrival-time information into a previously published deep-learning model for magnitude estimation. We apply this workflow to continuous recordings of aftershock sequences following the Turkey earthquake. The results of this case study showcase the reliability of our approach in earthquake detection, phase picking, and magnitude estimation, contributing valuable insights to seismic event analysis.
期刊介绍:
Solid Earth (SE) is a not-for-profit journal that publishes multidisciplinary research on the composition, structure, dynamics of the Earth from the surface to the deep interior at all spatial and temporal scales. The journal invites contributions encompassing observational, experimental, and theoretical investigations in the form of short communications, research articles, method articles, review articles, and discussion and commentaries on all aspects of the solid Earth (for details see manuscript types). Being interdisciplinary in scope, SE covers the following disciplines:
geochemistry, mineralogy, petrology, volcanology;
geodesy and gravity;
geodynamics: numerical and analogue modeling of geoprocesses;
geoelectrics and electromagnetics;
geomagnetism;
geomorphology, morphotectonics, and paleoseismology;
rock physics;
seismics and seismology;
critical zone science (Earth''s permeable near-surface layer);
stratigraphy, sedimentology, and palaeontology;
rock deformation, structural geology, and tectonics.