Oriented Rotatability Exponents of Solutions to Homogeneous Autonomous Linear Differential Systems

Pub Date : 2024-02-07 DOI:10.1134/s003744662401018x
A. Kh. Stash
{"title":"Oriented Rotatability Exponents of Solutions to Homogeneous Autonomous Linear Differential Systems","authors":"A. Kh. Stash","doi":"10.1134/s003744662401018x","DOIUrl":null,"url":null,"abstract":"<p>We fully study the oriented rotatability exponents of solutions to\nhomogeneous autonomous linear differential systems and\nestablish that the strong and weak oriented\nrotatability exponents coincide for each solution to an autonomous system\nof differential equations. We also show that the\nspectrum of this exponent (i.e., the set of values of nonzero\nsolutions) is naturally determined by the number-theoretic\nproperties of the set of imaginary parts of the eigenvalues of the\nmatrix of a system. This set (in contrast to the oscillation\nand wandering exponents) can contain other than zero values and the\nimaginary parts of the eigenvalues of the system matrix; moreover,\nthe power of this spectrum can be exponentially large in\ncomparison with the dimension of the space.\nIn demonstration we use the basics of ergodic theory,\nin particular, Weyl’s Theorem.\nWe prove that the spectra of all oriented rotatability exponents\nof autonomous systems with a symmetrical\nmatrix consist of a single zero value.\nWe also establish relationships\nbetween the main values of the exponents on a set of autonomous systems.\nThe obtained results allow us to conclude that the exponents of\noriented rotatability, despite their simple and natural definitions,\nare not analogs of the Lyapunov exponent in oscillation theory.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s003744662401018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We fully study the oriented rotatability exponents of solutions to homogeneous autonomous linear differential systems and establish that the strong and weak oriented rotatability exponents coincide for each solution to an autonomous system of differential equations. We also show that the spectrum of this exponent (i.e., the set of values of nonzero solutions) is naturally determined by the number-theoretic properties of the set of imaginary parts of the eigenvalues of the matrix of a system. This set (in contrast to the oscillation and wandering exponents) can contain other than zero values and the imaginary parts of the eigenvalues of the system matrix; moreover, the power of this spectrum can be exponentially large in comparison with the dimension of the space. In demonstration we use the basics of ergodic theory, in particular, Weyl’s Theorem. We prove that the spectra of all oriented rotatability exponents of autonomous systems with a symmetrical matrix consist of a single zero value. We also establish relationships between the main values of the exponents on a set of autonomous systems. The obtained results allow us to conclude that the exponents of oriented rotatability, despite their simple and natural definitions, are not analogs of the Lyapunov exponent in oscillation theory.

分享
查看原文
同构自洽线性微分系统解的定向可旋转性指数
我们全面研究了同质自治线性微分方程系统解的定向可旋转性指数,并证明自治微分方程系统的每个解的强定向可旋转性指数和弱定向可旋转性指数是重合的。我们还证明,该指数的频谱(即非零解的值集)自然是由系统矩阵特征值虚部集合的数论性质决定的。这个集合(与振荡和徘徊指数相反)可以包含零值以外的值和系统矩阵特征值的虚部;此外,与空间维度相比,这个谱的幂可以是指数级的。我们证明了具有对称矩阵的自治系统的所有定向可旋转性指数的谱都由一个单一的零值组成。我们还建立了自治系统集合上的指数主要值之间的关系。所获得的结果使我们得出结论:尽管定向可旋转性指数的定义简单而自然,但它们并不是振荡理论中的莱普诺夫指数的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信