The Riesz–Zygmund Sums of Fourier–Chebyshev Rational Integral Operators and Their Approximation Properties

Pub Date : 2024-01-01 DOI:10.1134/s0037446624010129
{"title":"The Riesz–Zygmund Sums of Fourier–Chebyshev Rational Integral Operators and Their Approximation Properties","authors":"","doi":"10.1134/s0037446624010129","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Studying the approximation properties of a certain Riesz–Zygmund sum of Fourier–Chebyshev rational integral operators with constraints on the number of geometrically distinct poles, we obtain an integral expression of the operators. We find upper bounds for pointwise and uniform approximations to the function <span> <span>\\( |x|^{s} \\)</span> </span> with <span> <span>\\( s\\in(0,2) \\)</span> </span> on the segment <span> <span>\\( [-1,1] \\)</span> </span>, an asymptotic expression for the majorant of uniform approximations, and the optimal values of the parameter of the approximant providing the greatest decrease rate of the majorant. We separately study the approximation properties of the Riesz–Zygmund sums for Fourier–Chebyshev polynomial series, establish an asymptotic expression for the Lebesgue constants, and estimate approximations to <span> <span>\\( f\\in H^{(\\gamma)}[-1,1] \\)</span> </span> and <span> <span>\\( \\gamma\\in(0,1] \\)</span> </span> as well as pointwise and uniform approximations to the function <span> <span>\\( |x|^{s} \\)</span> </span> with <span> <span>\\( s\\in(0,2) \\)</span> </span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0037446624010129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Studying the approximation properties of a certain Riesz–Zygmund sum of Fourier–Chebyshev rational integral operators with constraints on the number of geometrically distinct poles, we obtain an integral expression of the operators. We find upper bounds for pointwise and uniform approximations to the function \( |x|^{s} \) with \( s\in(0,2) \) on the segment \( [-1,1] \) , an asymptotic expression for the majorant of uniform approximations, and the optimal values of the parameter of the approximant providing the greatest decrease rate of the majorant. We separately study the approximation properties of the Riesz–Zygmund sums for Fourier–Chebyshev polynomial series, establish an asymptotic expression for the Lebesgue constants, and estimate approximations to \( f\in H^{(\gamma)}[-1,1] \) and \( \gamma\in(0,1] \) as well as pointwise and uniform approximations to the function  \( |x|^{s} \) with \( s\in(0,2) \) .

分享
查看原文
傅里叶-切比雪夫有理积分算子的里兹-齐格蒙德和及其近似性质
摘要 通过研究傅里叶-切比雪夫有理积分算子的某个里兹-齐格蒙德和的近似性质,以及对几何上不同极点数目的约束,我们得到了算子的积分表达式。我们找到了函数 \( |x|^{s} \) 在线段 \( [-1,1] \) 上与\( s\in(0,2) \) 的点逼近和均匀逼近的上界,均匀逼近的大数的渐近表达式,以及提供最大大数下降率的逼近参数的最优值。我们分别研究了傅里叶-切比雪夫多项式级数的 Riesz-Zygmund 和的近似性质,建立了 Lebesgue 常数的渐近表达式、并估计了 \( f\in H^{(\gamma)}[-1,1] \)和 \( \gamma\in(0,1] \)的近似值,以及函数 \( |x|^{s} \)与 \( s\in(0,2) \)的点和均匀近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信