Laplace Expansion for Bartlett--Nanda--Pillai Test Statistic and Its Error Bound

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
H. Wakaki, V. V. Ulyanov
{"title":"Laplace Expansion for Bartlett--Nanda--Pillai Test Statistic and Its Error Bound","authors":"H. Wakaki, V. V. Ulyanov","doi":"10.1137/s0040585x97t991635","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 68, Issue 4, Page 570-581, February 2024. <br/> We construct asymptotic expansions for the distribution function of the Bartlett--Nanda--Pillai statistic under the condition that the null linear hypothesis is valid in a multivariate linear model. Computable estimates of the accuracy of approximation are obtained via the Laplace approximation method, which is generalized to integrals for matrix-valued functions.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"96 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991635","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 68, Issue 4, Page 570-581, February 2024.
We construct asymptotic expansions for the distribution function of the Bartlett--Nanda--Pillai statistic under the condition that the null linear hypothesis is valid in a multivariate linear model. Computable estimates of the accuracy of approximation are obtained via the Laplace approximation method, which is generalized to integrals for matrix-valued functions.
巴特利特-南达-皮莱检验统计量的拉普拉斯展开及其误差范围
概率论及其应用》(Theory of Probability &Its Applications),第 68 卷第 4 期,第 570-581 页,2024 年 2 月。 在多元线性模型中零线性假设成立的条件下,我们构建了巴特利特-南达-皮莱统计量分布函数的渐近展开式。通过拉普拉斯近似法获得了近似精度的可计算估计值,并将其推广到矩阵值函数的积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信