On Symmetrized Chi-Square Tests in Autoregression with Outliers in Data

IF 0.5 4区 数学 Q4 STATISTICS & PROBABILITY
M. V. Boldin
{"title":"On Symmetrized Chi-Square Tests in Autoregression with Outliers in Data","authors":"M. V. Boldin","doi":"10.1137/s0040585x97t991623","DOIUrl":null,"url":null,"abstract":"Theory of Probability &amp;Its Applications, Volume 68, Issue 4, Page 559-569, February 2024. <br/> A linear stationary model $\\mathrm{AR}(p)$ with unknown expectation, coefficients, and the distribution function of innovations $G(x)$ is considered. Autoregression observations contain gross errors (outliers, contaminations). The distribution of contaminations $\\Pi$ is unknown, their intensity is $\\gamma n^{-1/2}$ with unknown $\\gamma$, and $n$ is the number of observations. The main problem here (among others) is to test the hypothesis on the normality of innovations $\\boldsymbol H_{\\Phi}\\colon G (x)\\in \\{\\Phi(x/\\theta),\\,\\theta&gt;0\\}$, where $\\Phi(x)$ is the distribution function of the normal law $\\boldsymbol N(0,1)$. In this setting, the previously constructed tests for autoregression with zero expectation do not apply. As an alternative, we propose special symmetrized chi-square type tests. Under the hypothesis and $\\gamma=0$, their asymptotic distribution is free. We study the asymptotic power under local alternatives in the form of the mixture $G(x)=A_{n,\\Phi}(x):=(1-n^{-1/2})\\Phi(x/\\theta_0)+n^{-1/2}H(x)$, where $H(x)$ is a distribution function, and $\\theta_0^2$ is the unknown variance of the innovations under $\\boldsymbol H_{\\Phi}$. The asymptotic qualitative robustness of the tests is established in terms of equicontinuity of the family of limit powers (as functions of $\\gamma$, $\\Pi,$ and $H(x)$) relative to $\\gamma$ at the point $\\gamma=0$.","PeriodicalId":51193,"journal":{"name":"Theory of Probability and its Applications","volume":"16 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/s0040585x97t991623","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Theory of Probability &Its Applications, Volume 68, Issue 4, Page 559-569, February 2024.
A linear stationary model $\mathrm{AR}(p)$ with unknown expectation, coefficients, and the distribution function of innovations $G(x)$ is considered. Autoregression observations contain gross errors (outliers, contaminations). The distribution of contaminations $\Pi$ is unknown, their intensity is $\gamma n^{-1/2}$ with unknown $\gamma$, and $n$ is the number of observations. The main problem here (among others) is to test the hypothesis on the normality of innovations $\boldsymbol H_{\Phi}\colon G (x)\in \{\Phi(x/\theta),\,\theta>0\}$, where $\Phi(x)$ is the distribution function of the normal law $\boldsymbol N(0,1)$. In this setting, the previously constructed tests for autoregression with zero expectation do not apply. As an alternative, we propose special symmetrized chi-square type tests. Under the hypothesis and $\gamma=0$, their asymptotic distribution is free. We study the asymptotic power under local alternatives in the form of the mixture $G(x)=A_{n,\Phi}(x):=(1-n^{-1/2})\Phi(x/\theta_0)+n^{-1/2}H(x)$, where $H(x)$ is a distribution function, and $\theta_0^2$ is the unknown variance of the innovations under $\boldsymbol H_{\Phi}$. The asymptotic qualitative robustness of the tests is established in terms of equicontinuity of the family of limit powers (as functions of $\gamma$, $\Pi,$ and $H(x)$) relative to $\gamma$ at the point $\gamma=0$.
关于数据中存在异常值的自回归中的对称齐次方检验
概率论及其应用》第 68 卷第 4 期第 559-569 页,2024 年 2 月。 本文考虑了一个线性静态模型 $\mathrm{AR}(p)$,该模型具有未知期望、系数和创新分布函数 $G(x)$。自回归观测结果包含严重错误(异常值、污染)。污染的分布 $\Pi$ 是未知的,其强度为 $\gamma n^{-1/2}$,其中 $\gamma$ 是未知的,而 $n$ 是观测值的数量。这里的主要问题(除其他外)是检验创新的正态性假设 $\boldsymbol H_{\Phi}\colon G (x)\in \{Phi(x/\theta),\,\theta>0\}$,其中 $\Phi(x)$ 是正态分布函数 $\boldsymbol N(0,1)$。在这种情况下,以前构建的零期望自回归检验并不适用。作为替代,我们提出了特殊的对称卡方检验。在假设和 $\gamma=0$ 条件下,它们的渐近分布是自由的。我们以混合物 $G(x)=A_{n,\Phi}(x):=(1-n^{-1/2})\Phi(x/\theta_0)+n^{-1/2}H(x)$ 的形式研究了局部替代条件下的渐近功率,其中 $H(x)$ 是分布函数,$\theta_0^2$ 是 $\boldsymbol H_\{Phi}$ 下创新的未知方差。测试的渐进定性稳健性是通过在 $\gamma=0$ 点相对于 $\gamma$ 的极限幂系(作为 $\gamma$、$\Pi,$ 和 $H(x)$ 的函数)的等连续性来建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Probability and its Applications
Theory of Probability and its Applications 数学-统计学与概率论
CiteScore
1.00
自引率
16.70%
发文量
54
审稿时长
6 months
期刊介绍: Theory of Probability and Its Applications (TVP) accepts original articles and communications on the theory of probability, general problems of mathematical statistics, and applications of the theory of probability to natural science and technology. Articles of the latter type will be accepted only if the mathematical methods applied are essentially new.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信