Valeria Pohlmann, Edgar Ricardo Schöffel, Eberson Diedrich Eicholz, Ernestino de Souza Gomes Guarino, Gustavo Rodrigues Scheer, Eduarda Voigt Franz, Artur Ramos Molina
{"title":"Corn and bean growth and production in agroforestry systems","authors":"Valeria Pohlmann, Edgar Ricardo Schöffel, Eberson Diedrich Eicholz, Ernestino de Souza Gomes Guarino, Gustavo Rodrigues Scheer, Eduarda Voigt Franz, Artur Ramos Molina","doi":"10.1007/s10457-024-00959-y","DOIUrl":null,"url":null,"abstract":"<p>Cultivating a biodiverse ecosystem through the intercropping of corn and beans in an agroforestry system (AS) can be a strategy for sustainable and weather-resilient production. However, the reduction in solar radiation availability may pose a challenge to the success of this agricultural practice. The objective of this study was to determine the potential effects of solar radiation transmittance in an AS on the growth and production of corn and beans in both sole-crop and intercropped conditions. We conducted experiments using a randomized complete block design in a three-factorial arrangement (2 × 6 × 2) for corn and a two-factorial arrangement (2 × 5) for beans. The treatments included different cultivation environments (AS and full sun), corn cultivars (BRS 015FB, BRS 019TL), and plant arrangements. The plant arrangements involved both corn and bean cultivars (BRS Paisano) in monoculture and intercropped configurations with one and two rows of each species interspersed (1:1; 2:2). We assessed plant growth, yield, and biological efficiency indices for the crops. The results indicate that AS, with its reduced solar radiation, promotes greater plant height and leaf area in both corn and bean plants but results in lower productivity compared to full sun. Among the corn cultivars, BRS 019TL exhibited the highest productivity. However, in years with severe droughts, the use of intercropping with BRS 015FB shows greater land use efficiency within the AS. Furthermore, corn can be successfully intercropped with beans without a loss in production, while beans are best cultivated as a monoculture.</p>","PeriodicalId":7610,"journal":{"name":"Agroforestry Systems","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agroforestry Systems","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10457-024-00959-y","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Cultivating a biodiverse ecosystem through the intercropping of corn and beans in an agroforestry system (AS) can be a strategy for sustainable and weather-resilient production. However, the reduction in solar radiation availability may pose a challenge to the success of this agricultural practice. The objective of this study was to determine the potential effects of solar radiation transmittance in an AS on the growth and production of corn and beans in both sole-crop and intercropped conditions. We conducted experiments using a randomized complete block design in a three-factorial arrangement (2 × 6 × 2) for corn and a two-factorial arrangement (2 × 5) for beans. The treatments included different cultivation environments (AS and full sun), corn cultivars (BRS 015FB, BRS 019TL), and plant arrangements. The plant arrangements involved both corn and bean cultivars (BRS Paisano) in monoculture and intercropped configurations with one and two rows of each species interspersed (1:1; 2:2). We assessed plant growth, yield, and biological efficiency indices for the crops. The results indicate that AS, with its reduced solar radiation, promotes greater plant height and leaf area in both corn and bean plants but results in lower productivity compared to full sun. Among the corn cultivars, BRS 019TL exhibited the highest productivity. However, in years with severe droughts, the use of intercropping with BRS 015FB shows greater land use efficiency within the AS. Furthermore, corn can be successfully intercropped with beans without a loss in production, while beans are best cultivated as a monoculture.
期刊介绍:
Agroforestry Systems is an international scientific journal that publishes results of novel, high impact original research, critical reviews and short communications on any aspect of agroforestry. The journal particularly encourages contributions that demonstrate the role of agroforestry in providing commodity as well non-commodity benefits such as ecosystem services. Papers dealing with both biophysical and socioeconomic aspects are welcome. These include results of investigations of a fundamental or applied nature dealing with integrated systems involving trees and crops and/or livestock. Manuscripts that are purely descriptive in nature or confirmatory in nature of well-established findings, and with limited international scope are discouraged. To be acceptable for publication, the information presented must be relevant to a context wider than the specific location where the study was undertaken, and provide new insight or make a significant contribution to the agroforestry knowledge base