Eigenphase distributions of unimodular circular ensembles

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Shinsuke Nishigaki
{"title":"Eigenphase distributions of unimodular circular ensembles","authors":"Shinsuke Nishigaki","doi":"10.1093/ptep/ptae018","DOIUrl":null,"url":null,"abstract":"Motivated by the study of Polyakov lines in gauge theories, Hanada and Watanabe Hanada and Watanabe [1] recently presented a conjectured formula for the distribution of eigenphases of Haar-distributed random SU(N) matrices (β = 2), supported by explicit examples at small N and by numerical samplings at larger N. In this letter, I spell out a concise proof of their formula, and present its orthogonal and symplectic counterparts, i.e. the eigenphase distributions of Haar-random unimodular symmetric (β = 1) and selfdual (β = 4) unitary matrices parametrizing SU(N)/SO(N) and SU(2N)/Sp(2N), respectively.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae018","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated by the study of Polyakov lines in gauge theories, Hanada and Watanabe Hanada and Watanabe [1] recently presented a conjectured formula for the distribution of eigenphases of Haar-distributed random SU(N) matrices (β = 2), supported by explicit examples at small N and by numerical samplings at larger N. In this letter, I spell out a concise proof of their formula, and present its orthogonal and symplectic counterparts, i.e. the eigenphase distributions of Haar-random unimodular symmetric (β = 1) and selfdual (β = 4) unitary matrices parametrizing SU(N)/SO(N) and SU(2N)/Sp(2N), respectively.
单模块圆形集合的特征相分布
受规规理论中波利亚科夫线研究的启发,Hanada 和 Watanabe Hanada 和 Watanabe [1] 最近提出了哈尔分布随机 SU(N) 矩阵 (β = 2) 的特征相分布的猜想公式,并得到了小 N 时的明确示例和大 N 时的数值采样的支持。在这封信中,我简明扼要地证明了他们的公式,并提出了其正交和交错对应公式,即分别参数化 SU(N)/SO(N) 和 SU(2N)/Sp(2N) 的哈尔随机单模态对称矩阵 (β = 1) 和自偶矩阵 (β = 4) 的特征相分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信