Enhanced classical radiation damping of electronic cyclotron motion in the vicinity of the Van Hove singularity in a waveguide

IF 3.5 4区 物理与天体物理 Q1 Physics and Astronomy
Yuki Goto, Savannah Garmon, Tomio Petrosky
{"title":"Enhanced classical radiation damping of electronic cyclotron motion in the vicinity of the Van Hove singularity in a waveguide","authors":"Yuki Goto, Savannah Garmon, Tomio Petrosky","doi":"10.1093/ptep/ptae021","DOIUrl":null,"url":null,"abstract":"We study the damping process of electron cyclotron motion and the resulting emission in a waveguide using the classical Friedrichs model without relying on perturbation analysis such as Fermi’s golden rule. A Van Hove singularity appears at the lower bound (or cut-off frequency) of the dispersion associated with each of the electromagnetic field modes in the waveguide. In the vicinity of the Van Hove singularity, we found that not only is the decay process associated with the resonance pole enhanced (amplification factor ∼104) but the branch-point effect is also comparably enhanced. As a result, the timescale on which most of the decay occurs is dramatically shortened. Further, this suggests that the non-Markovian branch point effect should be experimentally observable in the vicinity of the Van Hove singularity. Our treatment yields a physically-acceptable solution without the problematic runaway solution that is well known to appear in the traditional treatment of classical radiation damping based on the Abraham-Lorentz equation.","PeriodicalId":20710,"journal":{"name":"Progress of Theoretical and Experimental Physics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress of Theoretical and Experimental Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/ptep/ptae021","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We study the damping process of electron cyclotron motion and the resulting emission in a waveguide using the classical Friedrichs model without relying on perturbation analysis such as Fermi’s golden rule. A Van Hove singularity appears at the lower bound (or cut-off frequency) of the dispersion associated with each of the electromagnetic field modes in the waveguide. In the vicinity of the Van Hove singularity, we found that not only is the decay process associated with the resonance pole enhanced (amplification factor ∼104) but the branch-point effect is also comparably enhanced. As a result, the timescale on which most of the decay occurs is dramatically shortened. Further, this suggests that the non-Markovian branch point effect should be experimentally observable in the vicinity of the Van Hove singularity. Our treatment yields a physically-acceptable solution without the problematic runaway solution that is well known to appear in the traditional treatment of classical radiation damping based on the Abraham-Lorentz equation.
波导范霍夫奇点附近电子回旋运动的经典辐射阻尼增强
我们利用经典的弗里德里希斯模型研究了电子回旋运动的阻尼过程以及由此在波导中产生的发射,而不依赖于费米黄金定律等扰动分析。范霍夫奇点出现在与波导中每种电磁场模式相关的色散下限(或截止频率)处。我们发现,在范霍夫奇点附近,不仅与共振极相关的衰减过程会增强(放大系数 ∼104),而且支点效应也会相应增强。因此,大部分衰变发生的时间尺度大大缩短。此外,这表明在范霍夫奇点附近应该可以通过实验观测到非马尔可夫分支点效应。我们的处理方法产生了一个物理上可接受的解,而不会出现众所周知的基于亚伯拉罕-洛伦兹方程的经典辐射阻尼传统处理方法中出现的失控解问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress of Theoretical and Experimental Physics
Progress of Theoretical and Experimental Physics PHYSICS, MULTIDISCIPLINARY-PHYSICS, PARTICLES & FIELDS
CiteScore
12.00
自引率
5.70%
发文量
148
审稿时长
17 weeks
期刊介绍: Progress of Theoretical and Experimental Physics (PTEP) is an international journal that publishes articles on theoretical and experimental physics. PTEP is a fully open access, online-only journal published by the Physical Society of Japan. PTEP is the successor to Progress of Theoretical Physics (PTP), which terminated in December 2012 and merged into PTEP in January 2013. PTP was founded in 1946 by Hideki Yukawa, the first Japanese Nobel Laureate. PTEP, the successor journal to PTP, has a broader scope than that of PTP covering both theoretical and experimental physics. PTEP mainly covers areas including particles and fields, nuclear physics, astrophysics and cosmology, beam physics and instrumentation, and general and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信