{"title":"Enhancing peak prediction in residential load forecasting with soft dynamic time wrapping loss functions","authors":"Yuyao Chen, Christian Obrecht, Frédéric Kuznik","doi":"10.3233/ica-230731","DOIUrl":null,"url":null,"abstract":"Short-term residential load forecasting plays a crucial role in smart grids, ensuring an optimal match between energy demands and generation. With the inherent volatility of residential load patterns, deep learning has gained attention due to its ability to capture complex nonlinear relationships within hidden layers. However, most existing studies have relied on default loss functions such as mean squared error (MSE) or mean absolute error (MAE) for neural networks. These loss functions, while effective in overall prediction accuracy, lack specialized focus on accurately predicting load peaks. This article presents a comparative analysis of soft-DTW loss function, a smoothed formulation of Dynamic Time Wrapping (DTW), compared to other commonly used loss functions, in order to assess its effectiveness in improving peak prediction accuracy. To evaluate peak performance, we introduce a novel evaluation methodology using confusion matrix and propose new errors for peak position and peak load, tailored specifically for assessing peak performance in short-term load forecasting. Our results demonstrate the superiority of soft-DTW in capturing and predicting load peaks, surpassing other commonly used loss functions. Furthermore, the combination of soft-DTW with other loss functions, such as soft-DTW + MSE, soft-DTW + MAE, and soft-DTW + TDI (Time Distortion Index), also enhances peak prediction. However, the differences between these combined soft-DTW loss functions are not substantial. These findings highlight the significance of utilizing specialized loss functions, like soft-DTW, to improve peak prediction accuracy in short-term load forecasting.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ica-230731","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Short-term residential load forecasting plays a crucial role in smart grids, ensuring an optimal match between energy demands and generation. With the inherent volatility of residential load patterns, deep learning has gained attention due to its ability to capture complex nonlinear relationships within hidden layers. However, most existing studies have relied on default loss functions such as mean squared error (MSE) or mean absolute error (MAE) for neural networks. These loss functions, while effective in overall prediction accuracy, lack specialized focus on accurately predicting load peaks. This article presents a comparative analysis of soft-DTW loss function, a smoothed formulation of Dynamic Time Wrapping (DTW), compared to other commonly used loss functions, in order to assess its effectiveness in improving peak prediction accuracy. To evaluate peak performance, we introduce a novel evaluation methodology using confusion matrix and propose new errors for peak position and peak load, tailored specifically for assessing peak performance in short-term load forecasting. Our results demonstrate the superiority of soft-DTW in capturing and predicting load peaks, surpassing other commonly used loss functions. Furthermore, the combination of soft-DTW with other loss functions, such as soft-DTW + MSE, soft-DTW + MAE, and soft-DTW + TDI (Time Distortion Index), also enhances peak prediction. However, the differences between these combined soft-DTW loss functions are not substantial. These findings highlight the significance of utilizing specialized loss functions, like soft-DTW, to improve peak prediction accuracy in short-term load forecasting.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.