Subgraphs of BV functions on RCD spaces

IF 0.6 3区 数学 Q3 MATHEMATICS
Gioacchino Antonelli, Camillo Brena, Enrico Pasqualetto
{"title":"Subgraphs of BV functions on RCD spaces","authors":"Gioacchino Antonelli,&nbsp;Camillo Brena,&nbsp;Enrico Pasqualetto","doi":"10.1007/s10455-024-09945-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we extend classical results for subgraphs of functions of bounded variation in <span>\\(\\mathbb R^n\\times \\mathbb R\\)</span> to the setting of <span>\\({\\textsf{X}}\\times \\mathbb R\\)</span>, where <span>\\({\\textsf{X}}\\)</span> is an <span>\\({\\textrm{RCD}}(K,N)\\)</span> metric measure space. In particular, we give the precise expression of the push-forward onto <span>\\({\\textsf{X}}\\)</span> of the perimeter measure of the subgraph in <span>\\({\\textsf{X}}\\times \\mathbb R\\)</span> of a <span>\\({\\textrm{BV}}\\)</span> function on <span>\\({\\textsf{X}}\\)</span>. Moreover, in properly chosen good coordinates, we write the precise expression of the normal to the boundary of the subgraph of a <span>\\({\\textrm{BV}}\\)</span> function <i>f</i> with respect to the polar vector of <i>f</i>, and we prove change-of-variable formulas.\n</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-024-09945-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-024-09945-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we extend classical results for subgraphs of functions of bounded variation in \(\mathbb R^n\times \mathbb R\) to the setting of \({\textsf{X}}\times \mathbb R\), where \({\textsf{X}}\) is an \({\textrm{RCD}}(K,N)\) metric measure space. In particular, we give the precise expression of the push-forward onto \({\textsf{X}}\) of the perimeter measure of the subgraph in \({\textsf{X}}\times \mathbb R\) of a \({\textrm{BV}}\) function on \({\textsf{X}}\). Moreover, in properly chosen good coordinates, we write the precise expression of the normal to the boundary of the subgraph of a \({\textrm{BV}}\) function f with respect to the polar vector of f, and we prove change-of-variable formulas.

RCD 空间上的 BV 函数子图
摘要 在这项工作中,我们将在\(\mathbb R^n\times \mathbb R\) 中的有界变化函数子图的经典结果扩展到了\({\textsf{X}}\times \mathbb R\) 中,其中\({\textsf{X}}\) 是一个 \({\textrm{RCD}}(K,N)\) 度量空间。特别地,我们给出了一个函数在\({\textsf{X}}\)上的\({\textrm{BV}}\)子图的周长度量的前推到\({\textsf{X}}\)的精确表达式。此外,在正确选择的良好坐标中,我们写出了关于 f 的极向量的 \({\textrm{BV}} 函数 f 子图边界法线的精确表达式,并证明了变量变化公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信