{"title":"Uniqueness and Continuity of the Solution to $$L_p$$ Dual Minkowski Problem","authors":"Hejun Wang, Jiazu Zhou","doi":"10.1007/s40304-023-00374-2","DOIUrl":null,"url":null,"abstract":"<p>Lutwak et al. (Adv Math 329:85–132, 2018) introduced the <span>\\(L_p\\)</span> dual curvature measure that unifies several other geometric measures in dual Brunn–Minkowski theory and Brunn–Minkowski theory. Motivated by works in Lutwak et al. (Adv Math 329:85–132, 2018), we consider the uniqueness and continuity of the solution to the <span>\\(L_p\\)</span> dual Minkowski problem. To extend the important work (Theorem A) of LYZ to the case for general convex bodies, we establish some new Minkowski-type inequalities which are closely related to the optimization problem associated with the <span>\\(L_p\\)</span> dual Minkowski problem. When <span>\\(q< p\\)</span>, the uniqueness of the solution to the <span>\\(L_p\\)</span> dual Minkowski problem for general convex bodies is obtained. Moreover, we obtain the continuity of the solution to the <span>\\(L_p\\)</span> dual Minkowski problem for convex bodies.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40304-023-00374-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lutwak et al. (Adv Math 329:85–132, 2018) introduced the \(L_p\) dual curvature measure that unifies several other geometric measures in dual Brunn–Minkowski theory and Brunn–Minkowski theory. Motivated by works in Lutwak et al. (Adv Math 329:85–132, 2018), we consider the uniqueness and continuity of the solution to the \(L_p\) dual Minkowski problem. To extend the important work (Theorem A) of LYZ to the case for general convex bodies, we establish some new Minkowski-type inequalities which are closely related to the optimization problem associated with the \(L_p\) dual Minkowski problem. When \(q< p\), the uniqueness of the solution to the \(L_p\) dual Minkowski problem for general convex bodies is obtained. Moreover, we obtain the continuity of the solution to the \(L_p\) dual Minkowski problem for convex bodies.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.