{"title":"Steel Fiber Orientation Efficiency Factor Model for a Magnetically Treated Cement-Based Composite","authors":"","doi":"10.1186/s40069-023-00641-0","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In typical steel fiber-reinforced concrete, the fibers are randomly distributed and oriented throughout the matrix, and a magnetic field can effectively align these randomly oriented fibers. To predict the extent to which the steel fibers contained in mortar can be aligned by a magnetic field, an analytical steel fiber orientation efficiency factor model was proposed as a function of the magnetic induction intensity and exposure time. To verify the applicability of the proposed model, experiments were conducted for various magnetic induction intensities and exposure times with normal mortars and mortars in which some or all the sand was replaced with steel slag. The experimental results demonstrate that the proposed model allows predicting the degree of alignment of steel fibers under magnetic fields. However, this model can only be applied to a normal mortar. In the case of mortar containing steel slag, it is confirmed that the steel slag, which is a ferrous material, reduces the magnetic induction intensity, reducing the degree of alignment of steel fibers in the mortar.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-023-00641-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In typical steel fiber-reinforced concrete, the fibers are randomly distributed and oriented throughout the matrix, and a magnetic field can effectively align these randomly oriented fibers. To predict the extent to which the steel fibers contained in mortar can be aligned by a magnetic field, an analytical steel fiber orientation efficiency factor model was proposed as a function of the magnetic induction intensity and exposure time. To verify the applicability of the proposed model, experiments were conducted for various magnetic induction intensities and exposure times with normal mortars and mortars in which some or all the sand was replaced with steel slag. The experimental results demonstrate that the proposed model allows predicting the degree of alignment of steel fibers under magnetic fields. However, this model can only be applied to a normal mortar. In the case of mortar containing steel slag, it is confirmed that the steel slag, which is a ferrous material, reduces the magnetic induction intensity, reducing the degree of alignment of steel fibers in the mortar.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.