Nils Mengel, Marius Welzel, Woldemar Niedenthal, Markus Stein, Dominik Heider, Sangam Chatterjee
{"title":"Inkjet-printed quantum dots on paper as concept towards high-density long-term data storage","authors":"Nils Mengel, Marius Welzel, Woldemar Niedenthal, Markus Stein, Dominik Heider, Sangam Chatterjee","doi":"10.1088/2399-6528/ad246d","DOIUrl":null,"url":null,"abstract":"Handling and storing the immense amounts of data native to the information age is a major challenge in terms of technological sustainability and energy demand. To date, tape storage remains the most widespread method for data archiving, while DNA data storage appears to offer the best data density and long-term stability in the future. However, DNA data storage is still in its infancy primarily due to economic and accessibility challenges. This emphasizes the need for more practical and readily available alternatives. We present a method for data storage utilizing inkjet printable quantum dots on paper with photoluminescence (PL) readout. Our proof of principle study showcases the ability to print and stack multiple bits of data on a single spot by exploiting the unique PL properties of quantum dots. This approach utilizes easily accessible resources, including a consumer-grade printer and paper as the substrate. Additionally, we perform initial stability tests, investigate scalability by controlling emission intensity, and evaluate the potential data density achievable by our approach.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"28 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad246d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Handling and storing the immense amounts of data native to the information age is a major challenge in terms of technological sustainability and energy demand. To date, tape storage remains the most widespread method for data archiving, while DNA data storage appears to offer the best data density and long-term stability in the future. However, DNA data storage is still in its infancy primarily due to economic and accessibility challenges. This emphasizes the need for more practical and readily available alternatives. We present a method for data storage utilizing inkjet printable quantum dots on paper with photoluminescence (PL) readout. Our proof of principle study showcases the ability to print and stack multiple bits of data on a single spot by exploiting the unique PL properties of quantum dots. This approach utilizes easily accessible resources, including a consumer-grade printer and paper as the substrate. Additionally, we perform initial stability tests, investigate scalability by controlling emission intensity, and evaluate the potential data density achievable by our approach.
处理和存储信息时代的海量数据是技术可持续性和能源需求方面的一大挑战。迄今为止,磁带存储仍是最普遍的数据存档方法,而 DNA 数据存储似乎在未来能提供最佳的数据密度和长期稳定性。然而,DNA 数据存储仍处于起步阶段,这主要是由于经济和可访问性方面的挑战。因此,我们需要更实用、更容易获得的替代品。我们提出了一种在纸上利用可喷墨打印量子点和光致发光(PL)读出进行数据存储的方法。我们的原理验证研究展示了利用量子点独特的光致发光特性在一个点上打印和堆叠多比特数据的能力。这种方法利用了容易获得的资源,包括消费级打印机和作为基底的纸张。此外,我们还进行了初步的稳定性测试,通过控制发射强度研究了可扩展性,并评估了我们的方法所能达到的潜在数据密度。