An autoencoder for heterotic orbifolds with arbitrary geometry

IF 1.1 Q3 PHYSICS, MULTIDISCIPLINARY
Enrique Escalante–Notario, Ignacio Portillo–Castillo, Saúl Ramos–Sánchez
{"title":"An autoencoder for heterotic orbifolds with arbitrary geometry","authors":"Enrique Escalante–Notario, Ignacio Portillo–Castillo, Saúl Ramos–Sánchez","doi":"10.1088/2399-6528/ad246f","DOIUrl":null,"url":null,"abstract":"Artificial neural networks can be an important tool to improve the search for admissible string compactifications and characterize them. In this paper we construct the <monospace>heterotic orbiencoder</monospace>, a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometries. Our neural network can be easily trained to successfully encode the large parameter space of many orbifold geometries simultaneously, independently of the statistical dissimilarities of their training features. In particular, we show that our autoencoder is capable of compressing with good accuracy the large parameter space of two promising orbifold geometries in just three parameters. Further, most orbifold models with phenomenologically appealing features appear in bounded regions of this small space. Our results hint towards a possible simplification of the classification of (promising) heterotic orbifold models.","PeriodicalId":47089,"journal":{"name":"Journal of Physics Communications","volume":"12 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2399-6528/ad246f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial neural networks can be an important tool to improve the search for admissible string compactifications and characterize them. In this paper we construct the heterotic orbiencoder, a general deep autoencoder to study heterotic orbifold models arising from various Abelian orbifold geometries. Our neural network can be easily trained to successfully encode the large parameter space of many orbifold geometries simultaneously, independently of the statistical dissimilarities of their training features. In particular, we show that our autoencoder is capable of compressing with good accuracy the large parameter space of two promising orbifold geometries in just three parameters. Further, most orbifold models with phenomenologically appealing features appear in bounded regions of this small space. Our results hint towards a possible simplification of the classification of (promising) heterotic orbifold models.
具有任意几何形状的异质轨道折叠的自动编码器
人工神经网络可以作为一种重要工具,用于改进对可容许弦压缩的搜索并描述它们的特征。本文构建了异质轨道编码器(heterotic orbiencoder),这是一种通用的深度自动编码器,用于研究由各种阿贝尔轨道几何产生的异质轨道模型。我们的神经网络易于训练,可以同时成功编码多种轨道几何的庞大参数空间,而不受训练特征的统计相似性的影响。特别是,我们的研究表明,我们的自动编码器只需三个参数就能准确地压缩两个有前途的轨道几何图形的庞大参数空间。此外,大多数具有现象学吸引力特征的轨道模型都出现在这个小空间的有界区域。我们的研究结果为简化(有前途的)异质轨道模型的分类提供了可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics Communications
Journal of Physics Communications PHYSICS, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
0.00%
发文量
114
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信