Leray–Lions Equations of (p, q)-Type in the Entire Space with Unbounded Potentials

IF 1.2 3区 数学 Q1 MATHEMATICS
Federica Mennuni, Dimitri Mugnai
{"title":"Leray–Lions Equations of (p, q)-Type in the Entire Space with Unbounded Potentials","authors":"Federica Mennuni, Dimitri Mugnai","doi":"10.1007/s00032-024-00391-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove the existence of signed bounded solutions for a quasilinear elliptic equation in <span>\\({\\mathbb {R}}^N\\)</span> driven by a Leray–Lions operator of (<i>p</i>, <i>q</i>)–type in presence of unbounded potentials. A direct approach seems to be a hard task, and for this reason we will study approximating problems in bounded domains, whose resolutions needs refined tools from nonlinear analysis. In particular, we will use a weaker version of the classical Cerami–Palais–Smale condition together with a extension of the Weierstrass Theorem due to Candela–Palmieri, as well as a generalization of a celebrated convergence result by Boccardo–Murat–Puel.</p>","PeriodicalId":49811,"journal":{"name":"Milan Journal of Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Milan Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00032-024-00391-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we prove the existence of signed bounded solutions for a quasilinear elliptic equation in \({\mathbb {R}}^N\) driven by a Leray–Lions operator of (pq)–type in presence of unbounded potentials. A direct approach seems to be a hard task, and for this reason we will study approximating problems in bounded domains, whose resolutions needs refined tools from nonlinear analysis. In particular, we will use a weaker version of the classical Cerami–Palais–Smale condition together with a extension of the Weierstrass Theorem due to Candela–Palmieri, as well as a generalization of a celebrated convergence result by Boccardo–Murat–Puel.

整个空间中的无界势能 (p, q) 型勒雷狮子方程
在本文中,我们证明了在无约束势存在的情况下,由(p, q)型Leray-Lions算子驱动的\({\mathbb {R}}^N\) 中的准线性椭圆方程的有符号有界解的存在性。直接方法似乎是一项艰巨的任务,因此我们将研究有界域中的近似问题,这些问题的解决需要非线性分析的精炼工具。特别是,我们将使用经典的 Cerami-Palais-Smale 条件的弱化版本、Candela-Palmieri 提出的魏尔斯特拉斯定理的扩展,以及 Boccardo-Murat-Puel 提出的著名收敛结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: Milan Journal of Mathematics (MJM) publishes high quality articles from all areas of Mathematics and the Mathematical Sciences. The authors are invited to submit "articles with background", presenting a problem of current research with its history and its developments, the current state and possible future directions. The presentation should render the article of interest to a wider audience than just specialists. Many of the articles will be "invited contributions" from speakers in the "Seminario Matematico e Fisico di Milano". However, also other authors are welcome to submit articles which are in line with the "Aims and Scope" of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信