Fast interpolation and multiplication of unbalanced polynomials

Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche
{"title":"Fast interpolation and multiplication of unbalanced polynomials","authors":"Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, Daniel S. Roche","doi":"arxiv-2402.10139","DOIUrl":null,"url":null,"abstract":"We consider the classical problems of interpolating a polynomial given a\nblack box for evaluation, and of multiplying two polynomials, in the setting\nwhere the bit-lengths of the coefficients may vary widely, so-called unbalanced\npolynomials. Writing s for the total bit-length and D for the degree, our new\nalgorithms have expected running time $\\tilde{O}(s \\log D)$, whereas previous\nmethods for (resp.) dense or sparse arithmetic have at least $\\tilde{O}(sD)$ or\n$\\tilde{O}(s^2)$ bit complexity.","PeriodicalId":501033,"journal":{"name":"arXiv - CS - Symbolic Computation","volume":"313 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.10139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the classical problems of interpolating a polynomial given a black box for evaluation, and of multiplying two polynomials, in the setting where the bit-lengths of the coefficients may vary widely, so-called unbalanced polynomials. Writing s for the total bit-length and D for the degree, our new algorithms have expected running time $\tilde{O}(s \log D)$, whereas previous methods for (resp.) dense or sparse arithmetic have at least $\tilde{O}(sD)$ or $\tilde{O}(s^2)$ bit complexity.
非平衡多项式的快速插值和乘法
我们考虑了给定黑盒求值的多项式插值和两个多项式相乘的经典问题,在这种情况下,系数的比特长度可能变化很大,即所谓的不平衡多项式。用 s 表示总位长,用 D 表示度数,我们的新算法的预期运行时间为 $\tilde{O}(s \log D)$,而以前的密集或稀疏算术方法至少有 $\tilde{O}(sD)$ 或 $\tilde{O}(s^2)$ 的位复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信