Sufficient Conditions for Central Limit Theorems and Confidence Intervals for Randomized Quasi-Monte Carlo Methods

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Marvin K. Nakayama, Bruno Tuffin
{"title":"Sufficient Conditions for Central Limit Theorems and Confidence Intervals for Randomized Quasi-Monte Carlo Methods","authors":"Marvin K. Nakayama, Bruno Tuffin","doi":"10.1145/3643847","DOIUrl":null,"url":null,"abstract":"<p>Randomized quasi-Monte Carlo methods have been introduced with the main purpose of yielding a computable measure of error for quasi-Monte Carlo approximations through the implicit application of a central limit theorem over independent randomizations. But to increase precision for a given computational budget, the number of independent randomizations is usually set to a small value so that a large number of points are used from each randomized low-discrepancy sequence to benefit from the fast convergence rate of quasi-Monte Carlo. While a central limit theorem has been previously established for a specific but computationally expensive type of randomization, it is also known in general that fixing the number of randomizations and increasing the length of the sequence used for quasi-Monte Carlo can lead to a non-Gaussian limiting distribution. This paper presents sufficient conditions on the relative growth rates of the number of randomizations and the quasi-Monte Carlo sequence length to ensure a central limit theorem and also an asymptotically valid confidence interval. We obtain several results based on the Lindeberg condition for triangular arrays and expressed in terms of the regularity of the integrand and the convergence speed of the quasi-Monte Carlo method. We also analyze the resulting estimator’s convergence rate.</p>","PeriodicalId":50943,"journal":{"name":"ACM Transactions on Modeling and Computer Simulation","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Modeling and Computer Simulation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643847","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Randomized quasi-Monte Carlo methods have been introduced with the main purpose of yielding a computable measure of error for quasi-Monte Carlo approximations through the implicit application of a central limit theorem over independent randomizations. But to increase precision for a given computational budget, the number of independent randomizations is usually set to a small value so that a large number of points are used from each randomized low-discrepancy sequence to benefit from the fast convergence rate of quasi-Monte Carlo. While a central limit theorem has been previously established for a specific but computationally expensive type of randomization, it is also known in general that fixing the number of randomizations and increasing the length of the sequence used for quasi-Monte Carlo can lead to a non-Gaussian limiting distribution. This paper presents sufficient conditions on the relative growth rates of the number of randomizations and the quasi-Monte Carlo sequence length to ensure a central limit theorem and also an asymptotically valid confidence interval. We obtain several results based on the Lindeberg condition for triangular arrays and expressed in terms of the regularity of the integrand and the convergence speed of the quasi-Monte Carlo method. We also analyze the resulting estimator’s convergence rate.

随机准蒙特卡罗方法的中心极限定理和置信区间的充分条件
随机化准蒙特卡罗方法的主要目的是通过对独立随机化隐式应用中心极限定理,得出准蒙特卡罗近似的可计算误差度量。但是,为了在给定的计算预算下提高精度,独立随机化的数量通常设置为一个较小的值,以便从每个随机化的低差异序列中使用大量的点,从而受益于准蒙特卡罗的快速收敛率。虽然之前已经针对一种特定但计算昂贵的随机化类型建立了中心极限定理,但一般来说,固定随机化次数和增加准蒙特卡罗所用序列的长度也会导致非高斯极限分布。本文提出了随机化次数和准蒙特卡罗序列长度相对增长率的充分条件,以确保中心极限定理和渐近有效的置信区间。我们基于三角形阵列的林德伯格条件,用积分的正则性和准蒙特卡罗方法的收敛速度来表示,得到了一些结果。我们还分析了由此得出的估计值的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation 工程技术-计算机:跨学科应用
CiteScore
2.50
自引率
22.20%
发文量
29
审稿时长
>12 weeks
期刊介绍: The ACM Transactions on Modeling and Computer Simulation (TOMACS) provides a single archival source for the publication of high-quality research and developmental results referring to all phases of the modeling and simulation life cycle. The subjects of emphasis are discrete event simulation, combined discrete and continuous simulation, as well as Monte Carlo methods. The use of simulation techniques is pervasive, extending to virtually all the sciences. TOMACS serves to enhance the understanding, improve the practice, and increase the utilization of computer simulation. Submissions should contribute to the realization of these objectives, and papers treating applications should stress their contributions vis-á-vis these objectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信