Bounds on depth of decision trees derived from decision rule systems with discrete attributes

IF 1.2 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kerven Durdymyradov, Mikhail Moshkov
{"title":"Bounds on depth of decision trees derived from decision rule systems with discrete attributes","authors":"Kerven Durdymyradov,&nbsp;Mikhail Moshkov","doi":"10.1007/s10472-024-09933-x","DOIUrl":null,"url":null,"abstract":"<div><p>Systems of decision rules and decision trees are widely used as a means for knowledge representation, as classifiers, and as algorithms. They are among the most interpretable models for classifying and representing knowledge. The study of relationships between these two models is an important task of computer science. It is easy to transform a decision tree into a decision rule system. The inverse transformation is a more difficult task. In this paper, we study unimprovable upper and lower bounds on the minimum depth of decision trees derived from decision rule systems with discrete attributes depending on the various parameters of these systems. To illustrate the process of transformation of decision rule systems into decision trees, we generalize well known result for Boolean functions to the case of functions of <i>k</i>-valued logic.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 3","pages":"703 - 732"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-024-09933-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Systems of decision rules and decision trees are widely used as a means for knowledge representation, as classifiers, and as algorithms. They are among the most interpretable models for classifying and representing knowledge. The study of relationships between these two models is an important task of computer science. It is easy to transform a decision tree into a decision rule system. The inverse transformation is a more difficult task. In this paper, we study unimprovable upper and lower bounds on the minimum depth of decision trees derived from decision rule systems with discrete attributes depending on the various parameters of these systems. To illustrate the process of transformation of decision rule systems into decision trees, we generalize well known result for Boolean functions to the case of functions of k-valued logic.

从具有离散属性的决策规则系统得出的决策树深度的界限
决策规则和决策树系统作为一种知识表示方法、分类器和算法被广泛使用。它们是最易解释的知识分类和表示模型之一。研究这两种模型之间的关系是计算机科学的一项重要任务。将决策树转化为决策规则系统很容易。反向转换则是一项更为艰巨的任务。在本文中,我们研究了从具有离散属性的决策规则系统中导出的决策树的最小深度的不可改进的上界和下界,这取决于这些系统的各种参数。为了说明将决策规则系统转化为决策树的过程,我们将已知的布尔函数结果推广到 k 值逻辑函数的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
3.00
自引率
8.30%
发文量
37
审稿时长
>12 weeks
期刊介绍: Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning. The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors. Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信