{"title":"A category theory approach to the semiotics of machine learning","authors":"Fernando Tohmé, Rocco Gangle, Gianluca Caterina","doi":"10.1007/s10472-024-09932-y","DOIUrl":null,"url":null,"abstract":"<div><p>The successes of Machine Learning, and in particular of Deep Learning systems, have led to a reformulation of the Artificial Intelligence agenda. One of the pressing issues in the field is the extraction of knowledge out of the behavior of those systems. In this paper we propose a semiotic analysis of that behavior, based on the formal model of <i>learners</i>. We analyze the topos-theoretic properties that ensure the logical expressivity of the knowledge embodied by learners. Furthermore, we show that there exists an ideal <i>universal learner</i>, able to interpret the knowledge gained about any possible function as well as about itself, which can be monotonically approximated by networks of increasing size.</p></div>","PeriodicalId":7971,"journal":{"name":"Annals of Mathematics and Artificial Intelligence","volume":"92 3","pages":"733 - 751"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Mathematics and Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10472-024-09932-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The successes of Machine Learning, and in particular of Deep Learning systems, have led to a reformulation of the Artificial Intelligence agenda. One of the pressing issues in the field is the extraction of knowledge out of the behavior of those systems. In this paper we propose a semiotic analysis of that behavior, based on the formal model of learners. We analyze the topos-theoretic properties that ensure the logical expressivity of the knowledge embodied by learners. Furthermore, we show that there exists an ideal universal learner, able to interpret the knowledge gained about any possible function as well as about itself, which can be monotonically approximated by networks of increasing size.
期刊介绍:
Annals of Mathematics and Artificial Intelligence presents a range of topics of concern to scholars applying quantitative, combinatorial, logical, algebraic and algorithmic methods to diverse areas of Artificial Intelligence, from decision support, automated deduction, and reasoning, to knowledge-based systems, machine learning, computer vision, robotics and planning.
The journal features collections of papers appearing either in volumes (400 pages) or in separate issues (100-300 pages), which focus on one topic and have one or more guest editors.
Annals of Mathematics and Artificial Intelligence hopes to influence the spawning of new areas of applied mathematics and strengthen the scientific underpinnings of Artificial Intelligence.