GRAPH CHARACTERISATION OF THE ANNIHILATOR IDEALS OF LEAVITT PATH ALGEBRAS

IF 0.6 4区 数学 Q3 MATHEMATICS
LIA VAŠ
{"title":"GRAPH CHARACTERISATION OF THE ANNIHILATOR IDEALS OF LEAVITT PATH ALGEBRAS","authors":"LIA VAŠ","doi":"10.1017/s0004972723001466","DOIUrl":null,"url":null,"abstract":"If <jats:italic>E</jats:italic> is a graph and <jats:italic>K</jats:italic> is a field, we consider an ideal <jats:italic>I</jats:italic> of the Leavitt path algebra <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline1.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:italic>E</jats:italic> over <jats:italic>K</jats:italic>. We describe the admissible pair corresponding to the smallest graded ideal which contains <jats:italic>I</jats:italic> where the grading in question is the natural grading of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline2.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline3.png\" /> <jats:tex-math> ${\\mathbb {Z}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Using this description, we show that the right and the left annihilators of <jats:italic>I</jats:italic> are <jats:italic>equal</jats:italic> (which may be somewhat surprising given that <jats:italic>I</jats:italic> may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on <jats:italic>E</jats:italic> which is equivalent to unital <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0004972723001466_inline4.png\" /> <jats:tex-math> $L_K(E)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> having this property.","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"93 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972723001466","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

If E is a graph and K is a field, we consider an ideal I of the Leavitt path algebra $L_K(E)$ of E over K. We describe the admissible pair corresponding to the smallest graded ideal which contains I where the grading in question is the natural grading of $L_K(E)$ by ${\mathbb {Z}}$ . Using this description, we show that the right and the left annihilators of I are equal (which may be somewhat surprising given that I may not be self-adjoint). In particular, we establish that both annihilators correspond to the same admissible pair and its description produces the characterisation from the title. Then, we turn to the property that the right (equivalently left) annihilator of any ideal is a direct summand and recall that a unital ring with this property is said to be quasi-Baer. We exhibit a condition on E which is equivalent to unital $L_K(E)$ having this property.
Leavitt 路径代数的湮没子表征图
如果 E 是一个图,K 是一个域,我们将考虑 E 在 K 上的莱维特路径代数 $L_K(E)$ 的理想 I。我们将描述与包含 I 的最小分级理想相对应的可容许对,其中的分级是 $L_K(E)$ 的自然分级 ${mathbb {Z}}$ 。利用这一描述,我们可以证明 I 的右湮和左湮是相等的(鉴于 I 可能不是自结的)。特别是,我们确定这两个湮没器对应于同一可容许对,并且其描述产生了标题中的特征。然后,我们将讨论任意理想的右湮没器(等同于左湮没器)是直接和这一性质,并回顾具有这一性质的单素环被称为准巴环。我们将展示 E 的一个条件,它等价于具有这一性质的单素 $L_K(E)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信