On a self-embedding problem for self-similar sets

Pub Date : 2024-02-14 DOI:10.1017/etds.2024.2
JIAN-CI XIAO
{"title":"On a self-embedding problem for self-similar sets","authors":"JIAN-CI XIAO","doi":"10.1017/etds.2024.2","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline1.png\" /> <jats:tex-math> $K\\subset {\\mathbb {R}}^d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be a self-similar set generated by an iterated function system <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline2.png\" /> <jats:tex-math> $\\{\\varphi _i\\}_{i=1}^m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the strong separation condition and let <jats:italic>f</jats:italic> be a contracting similitude with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline3.png\" /> <jats:tex-math> $f(K)\\subseteq K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline4.png\" /> <jats:tex-math> $f(K)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is relatively open in <jats:italic>K</jats:italic> if all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline5.png\" /> <jats:tex-math> $\\varphi _i$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [<jats:italic>Ergod. Th. &amp; Dynam. Sys.</jats:italic>30 (2010), 399–440]. As a byproduct of our argument, when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000026_inline6.png\" /> <jats:tex-math> $d=1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:italic>K</jats:italic> admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that <jats:italic>K</jats:italic> is symmetric. This partially answers a question of Feng and Wang [<jats:italic>Adv. Math.</jats:italic>222 (2009), 1964–1981].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $K\subset {\mathbb {R}}^d$ be a self-similar set generated by an iterated function system $\{\varphi _i\}_{i=1}^m$ satisfying the strong separation condition and let f be a contracting similitude with $f(K)\subseteq K$ . We show that $f(K)$ is relatively open in K if all $\varphi _i$ share a common contraction ratio and orthogonal part. We also provide a counterexample when the orthogonal parts are allowed to vary. This partially answers a question of Elekes, Keleti and Máthé [Ergod. Th. & Dynam. Sys.30 (2010), 399–440]. As a byproduct of our argument, when $d=1$ and K admits two homogeneous generating iterated function systems satisfying the strong separation condition but with contraction ratios of opposite signs, we show that K is symmetric. This partially answers a question of Feng and Wang [Adv. Math.222 (2009), 1964–1981].
分享
查看原文
关于自相似集合的自嵌入问题
让 $Ksubset {\mathbb {R}}^d$ 是由满足强分离条件的迭代函数系统 $\{\varphi _i}_{i=1}^m$ 生成的自相似集合,并让 f 是具有 $f(K)\subseteq K$ 的收缩相似。我们证明,如果所有 $\varphi _i$ 都有一个共同的收缩比和正交部分,那么 $f(K)$ 在 K 中是相对开放的。当允许正交部分变化时,我们还提供了一个反例。这部分回答了埃莱克斯、凯莱蒂和马特的一个问题[Ergod.作为我们论证的副产品,当 $d=1$ 且 K 包含两个满足强分离条件但收缩比符号相反的同质生成迭代函数系统时,我们证明 K 是对称的。这部分回答了冯和王的一个问题[Adv. Math.222 (2009), 1964-1981]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信