Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China

IF 2.7 3区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Weige Nan, Zhibao Dong, Zhengchao Zhou, Qiang Li, Guoxiang Chen
{"title":"Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land, China","authors":"Weige Nan, Zhibao Dong, Zhengchao Zhou, Qiang Li, Guoxiang Chen","doi":"10.1007/s40333-024-0050-y","DOIUrl":null,"url":null,"abstract":"<p>Vegetation restoration through artificial plantation is an effective method to combat desertification, especially in arid and semi-arid areas. This study aimed to explore the ecological effect of the plantation of <i>Sabina vulgaris</i> on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land, China. We collected soil samples from five depth layers (0–20, 20–40, 40–60, 60–80, and 80–100 cm) in the <i>S. vulgaris</i> plantation plots across four plantation ages (4, 7, 10, and 16 years) in November 2019, and assessed soil physical (soil bulk density, soil porosity, and soil particle size) and chemical (soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), cation-exchange capacity (CEC), salinity, pH, and C/N ratio) properties. The results indicated that the soil predominantly consisted of sand particles (94.27%–99.67%), with the remainder being silt and clay. As plantation age increased, silt and very fine sand contents progressively rose. After 16 years of planting, there was a marked reduction in the mean soil particle size. The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement. Significant positive correlations were observed for the clay, silt, and very fine sand (mean diameter of 0.000–0.100 mm) with SOC, AK, and pH. In contrast, fine sand and medium sand (mean diameter of 0.100–0.500 mm) showed significant negative correlations with these indicators. Our findings ascertain that the plantation of <i>S. vulgaris</i> requires 10 years to effectively act as a windbreak and contribute to sand fixation, and needs 16 years to improve soil physical and chemical properties. Importantly, these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas. This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.</p>","PeriodicalId":49169,"journal":{"name":"Journal of Arid Land","volume":"30 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Arid Land","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s40333-024-0050-y","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Vegetation restoration through artificial plantation is an effective method to combat desertification, especially in arid and semi-arid areas. This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land, China. We collected soil samples from five depth layers (0–20, 20–40, 40–60, 60–80, and 80–100 cm) in the S. vulgaris plantation plots across four plantation ages (4, 7, 10, and 16 years) in November 2019, and assessed soil physical (soil bulk density, soil porosity, and soil particle size) and chemical (soil organic carbon (SOC), total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), available potassium (AK), cation-exchange capacity (CEC), salinity, pH, and C/N ratio) properties. The results indicated that the soil predominantly consisted of sand particles (94.27%–99.67%), with the remainder being silt and clay. As plantation age increased, silt and very fine sand contents progressively rose. After 16 years of planting, there was a marked reduction in the mean soil particle size. The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement. Significant positive correlations were observed for the clay, silt, and very fine sand (mean diameter of 0.000–0.100 mm) with SOC, AK, and pH. In contrast, fine sand and medium sand (mean diameter of 0.100–0.500 mm) showed significant negative correlations with these indicators. Our findings ascertain that the plantation of S. vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation, and needs 16 years to improve soil physical and chemical properties. Importantly, these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas. This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China.

在中国木乌沙地种植沙棘的生态效应
通过人工种植恢复植被是防治荒漠化的有效方法,尤其是在干旱和半干旱地区。本研究旨在探讨在中国木乌沙地东南边缘种植沙棘对土壤理化性质的生态影响。我们采集了四个沙棘种植地块中五个深度层(0-20 厘米、20-40 厘米、40-60 厘米、60-80 厘米和 80-100 厘米)的土壤样本。土壤物理(土壤容重、土壤孔隙度和土壤粒径)和化学(土壤有机碳(SOC)、全氮(TN)、可利用氮(AN)、可利用磷(AP)、可利用钾(AK)、阳离子交换容量(CEC)、盐度、pH 值和碳氮比)特性。结果表明,土壤主要由沙粒组成(94.27%-99.67%),其余为淤泥和粘土。随着种植年限的增加,淤泥和细沙的含量逐渐增加。种植 16 年后,平均土壤粒径明显减小。最初的土壤肥力较低,种植 4 至 10 年后土壤肥力有所下降,之后才有所改善。粘土、淤泥和极细砂(平均直径 0.000-0.100 毫米)与 SOC、AK 和 pH 呈显著正相关。相比之下,细沙和中沙(平均直径 0.100-0.500 毫米)与这些指标呈显著负相关。我们的研究结果表明,种植红豆杉需要 10 年才能有效起到防风固沙的作用,需要 16 年才能改善土壤的物理和化学性质。重要的是,这些改善对干旱和半干旱地区的植被恢复非常有益。这项研究可为中国沙地植被生态系统的保护和恢复提供有价值的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Arid Land
Journal of Arid Land ENVIRONMENTAL SCIENCES-
CiteScore
4.70
自引率
6.70%
发文量
768
审稿时长
3.2 months
期刊介绍: The Journal of Arid Land is an international peer-reviewed journal co-sponsored by Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences and Science Press. It aims to meet the needs of researchers, students and practitioners in sustainable development and eco-environmental management, focusing on the arid and semi-arid lands in Central Asia and the world at large. The Journal covers such topics as the dynamics of natural resources (including water, soil and land, organism and climate), the security and sustainable development of natural resources, and the environment and the ecology in arid and semi-arid lands, especially in Central Asia. Coverage also includes interactions between the atmosphere, hydrosphere, biosphere, and lithosphere, and the relationship between these natural processes and human activities. Also discussed are patterns of geography, ecology and environment; ecological improvement and environmental protection; and regional responses and feedback mechanisms to global change. The Journal of Arid Land also presents reviews, brief communications, trends and book reviews of work on these topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信