Sharp Morrey regularity theory for a fourth order geometrical equation

IF 1.2 4区 数学 Q1 MATHEMATICS
{"title":"Sharp Morrey regularity theory for a fourth order geometrical equation","authors":"","doi":"10.1007/s10473-024-0202-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper is a continuation of recent work by Guo-Xiang-Zheng [10]. We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation <span> <span>$$\\Delta^{2}u=\\Delta(V\\nabla u)+{\\text{div}}(w\\nabla u)+(\\nabla\\omega+F)\\cdot\\nabla u+f\\qquad\\text{in}B^{4},$$</span> </span> under the smallest regularity assumptions of <em>V</em>, <em>ω</em>, <em>ω</em>, <em>F</em>, where <em>f</em> belongs to some Morrey spaces. This work was motivated by many geometrical problems such as the flow of biharmonic mappings. Our results deepens the <em>L</em><sup><em>p</em></sup> type regularity theory of [10], and generalizes the work of Du, Kang and Wang [4] on a second order problem to our fourth order problems.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0202-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is a continuation of recent work by Guo-Xiang-Zheng [10]. We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation $$\Delta^{2}u=\Delta(V\nabla u)+{\text{div}}(w\nabla u)+(\nabla\omega+F)\cdot\nabla u+f\qquad\text{in}B^{4},$$ under the smallest regularity assumptions of V, ω, ω, F, where f belongs to some Morrey spaces. This work was motivated by many geometrical problems such as the flow of biharmonic mappings. Our results deepens the Lp type regularity theory of [10], and generalizes the work of Du, Kang and Wang [4] on a second order problem to our fourth order problems.

四阶几何方程的锐莫里正则理论
摘要 本文是 Guo-Xiang-Zheng [10] 近期工作的延续。我们推导了四阶非均质 Lamm-Rivière 方程的弱解的尖锐 Morrey 正则理论 $$\Delta^{2}u=\Delta(V\nabla u)+{\text{div}}(w\nabla u)+(\nabla\omega+F)\cdot\nabla u+f\qquad\text{in}B^{4}、$$ 在 V, ω, ω, F 的最小正则假设下,其中 f 属于某个 Morrey 空间。这项工作的动机来自于许多几何问题,比如双谐波映射的流动。我们的结果深化了 [10] 的 Lp 型正则性理论,并将 Du、Kang 和 Wang [4] 在二阶问题上的工作推广到我们的四阶问题上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信