Highly sensitive flexible capacitive pressure sensor with structured elastomeric dielectric layers

IF 2.4 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Gaurav Rawal, Animangsu Ghatak
{"title":"Highly sensitive flexible capacitive pressure sensor with structured elastomeric dielectric layers","authors":"Gaurav Rawal, Animangsu Ghatak","doi":"10.1088/1361-6439/ad1e35","DOIUrl":null,"url":null,"abstract":"Sensitive yet stable, robust yet flexible and accurate yet energy efficient pressure sensors are required for variety of purposes. While a large variety of designs and dielectric materials have been explored for this purpose, there is still need of a flexible pressure sensor that will allow easy scale up and inexpensive fabrication. To this end, we have presented here the design of a flexible capacitive pressure sensor using copper coated paper as flexible electrodes and soft Ecoflex layers decorated with cylindrical micro-pillars as the dielectric. While microscopic construct of the sensor allows its easy manufacturability, softness of the layer imparts sensitivity to it. In contrast to many conventional sensors, this design yields sensitivity as high as ∼5 kPa<sup>−1</sup> at pressure &lt;1 kPa and somewhat smaller sensitivity as pressure exceeds 1 kPa. We have varied systematically pillar diameter, skin thickness of dielectric layer and pitch of the pillar array to optimise the design and demonstrate its easy tunability. We have presented a model based on buckling of the pillars to predict the response of the sensor. We have explored also a specific design that minimises the hysteresis.","PeriodicalId":16346,"journal":{"name":"Journal of Micromechanics and Microengineering","volume":"64 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Microengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6439/ad1e35","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Sensitive yet stable, robust yet flexible and accurate yet energy efficient pressure sensors are required for variety of purposes. While a large variety of designs and dielectric materials have been explored for this purpose, there is still need of a flexible pressure sensor that will allow easy scale up and inexpensive fabrication. To this end, we have presented here the design of a flexible capacitive pressure sensor using copper coated paper as flexible electrodes and soft Ecoflex layers decorated with cylindrical micro-pillars as the dielectric. While microscopic construct of the sensor allows its easy manufacturability, softness of the layer imparts sensitivity to it. In contrast to many conventional sensors, this design yields sensitivity as high as ∼5 kPa−1 at pressure <1 kPa and somewhat smaller sensitivity as pressure exceeds 1 kPa. We have varied systematically pillar diameter, skin thickness of dielectric layer and pitch of the pillar array to optimise the design and demonstrate its easy tunability. We have presented a model based on buckling of the pillars to predict the response of the sensor. We have explored also a specific design that minimises the hysteresis.
具有结构化弹性电介质层的高灵敏度柔性电容式压力传感器
各种用途都需要灵敏而稳定、坚固而灵活、精确而节能的压力传感器。虽然人们已经为此探索了多种设计和介电材料,但仍然需要一种易于放大且制造成本低廉的柔性压力传感器。为此,我们在此介绍一种柔性电容式压力传感器的设计,该传感器使用铜箔纸作为柔性电极,使用装饰有圆柱形微柱的柔软 Ecoflex 层作为电介质。传感器的微观结构使其易于制造,而层的柔软性则提高了传感器的灵敏度。与许多传统传感器相比,这种设计在压力为 1 kPa 时的灵敏度高达 5 kPa-1,当压力超过 1 kPa 时灵敏度略低。我们系统地改变了支柱直径、介质层的表皮厚度和支柱阵列的间距,以优化设计并证明其易于调整。我们提出了一个基于支柱屈曲的模型来预测传感器的响应。我们还探索了一种能最大限度减少滞后的特殊设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Micromechanics and Microengineering
Journal of Micromechanics and Microengineering 工程技术-材料科学:综合
CiteScore
4.50
自引率
4.30%
发文量
136
审稿时长
2.8 months
期刊介绍: Journal of Micromechanics and Microengineering (JMM) primarily covers experimental work, however relevant modelling papers are considered where supported by experimental data. The journal is focussed on all aspects of: -nano- and micro- mechanical systems -nano- and micro- electomechanical systems -nano- and micro- electrical and mechatronic systems -nano- and micro- engineering -nano- and micro- scale science Please note that we do not publish materials papers with no obvious application or link to nano- or micro-engineering. Below are some examples of the topics that are included within the scope of the journal: -MEMS and NEMS: Including sensors, optical MEMS/NEMS, RF MEMS/NEMS, etc. -Fabrication techniques and manufacturing: Including micromachining, etching, lithography, deposition, patterning, self-assembly, 3d printing, inkjet printing. -Packaging and Integration technologies. -Materials, testing, and reliability. -Micro- and nano-fluidics: Including optofluidics, acoustofluidics, droplets, microreactors, organ-on-a-chip. -Lab-on-a-chip and micro- and nano-total analysis systems. -Biomedical systems and devices: Including bio MEMS, biosensors, assays, organ-on-a-chip, drug delivery, cells, biointerfaces. -Energy and power: Including power MEMS/NEMS, energy harvesters, actuators, microbatteries. -Electronics: Including flexible electronics, wearable electronics, interface electronics. -Optical systems. -Robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信