{"title":"The global existence of strong solutions to thermomechanical Cucker-Smale-Stokes equations in the whole domain","authors":"Weiyuan Zou","doi":"10.1007/s10473-024-0307-8","DOIUrl":null,"url":null,"abstract":"<p>We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale (for short, TCS) model coupled with Stokes equations in the whole space. The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force. In this paper, we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"14 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0307-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study the global existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker-Smale (for short, TCS) model coupled with Stokes equations in the whole space. The coupled system consists of the kinetic TCS equation for a particle ensemble and the Stokes equations for a fluid via a drag force. In this paper, we present a complete analysis of the existence of global-in-time strong solutions to the coupled model without any smallness restrictions on the initial data.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.