Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

IF 1.2 4区 数学 Q1 MATHEMATICS
Xiaoshan Wang, Zhongqian Wang, Zhe Jia
{"title":"Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source","authors":"Xiaoshan Wang, Zhongqian Wang, Zhe Jia","doi":"10.1007/s10473-024-0308-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the following attraction-repulsion chemotaxis system with <i>p</i>-Laplacian diffusion and logistic source </p><span>$$\\left\\{ {\\matrix{{{u_t} = \\nabla \\cdot (|\\nabla u{|^{p - 2}}\\nabla u) - \\chi \\nabla \\cdot (u\\nabla v) + \\xi \\nabla \\cdot (u\\nabla w) + f(u),} \\hfill &amp; {x \\in \\Omega ,\\,\\,t &gt; 0,} \\hfill \\cr {{v_t} = \\Delta v - \\beta v + \\alpha {u^{{k_1}}},} \\hfill &amp; {x \\in \\Omega ,\\,\\,t &gt; 0,} \\hfill \\cr {0 = \\Delta w - \\delta w + \\gamma {u^{{k_2}}},} \\hfill &amp; {x \\in \\Omega ,\\,\\,t &gt; 0,} \\hfill \\cr {u(x,0) = {u_0}(x),\\,\\,\\,v(x,0) = {v_0}(x),\\,\\,\\,w(x,0) = {w_0}(x),} \\hfill &amp; {x \\in \\Omega .} \\hfill \\cr } } \\right.$$</span><p>The system here is under a homogenous Neumann boundary condition in a bounded domain Ω ⊂ ℝ<sup><i>n</i></sup>(<i>n</i> ≥ 2), with <i>χ</i>, <i>ξ</i>, <i>α</i>, <i>β</i>, <i>γ</i>, <i>δ</i>, <i>k</i><sub>1</sub>, <i>k</i><sub>2</sub> &gt; 0, <i>p</i> ≥ 2. In addition, the function <i>f</i> is smooth and satisfies that <i>f</i>(<i>s</i>) ≤ κ − <i>μs</i><sup><i>l</i></sup> for all <i>s</i> ≥ 0, with κ ∈ ℝ, <i>μ</i> &gt; 0, <i>l</i> &gt; 1. It is shown that (i) if <span>\\(l&gt;\\max\\{2k_{1},{2k_{1}n\\over{2+n}}+{1\\over{p-1}}\\}\\)</span>, then system possesses a global bounded weak solution and (ii) if <span>\\(k_{2}&gt;\\max\\{2k_{1}-1,{2k_{1}n\\over{2+n}}+{2-p\\over{p-1}}\\}\\)</span> with <i>l</i> &gt; 2, then system possesses a global bounded weak solution.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0308-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

$$\left\{ {\matrix{{{u_t} = \nabla \cdot (|\nabla u{|^{p - 2}}\nabla u) - \chi \nabla \cdot (u\nabla v) + \xi \nabla \cdot (u\nabla w) + f(u),} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {{v_t} = \Delta v - \beta v + \alpha {u^{{k_1}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {0 = \Delta w - \delta w + \gamma {u^{{k_2}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {u(x,0) = {u_0}(x),\,\,\,v(x,0) = {v_0}(x),\,\,\,w(x,0) = {w_0}(x),} \hfill & {x \in \Omega .} \hfill \cr } } \right.$$

The system here is under a homogenous Neumann boundary condition in a bounded domain Ω ⊂ ℝn(n ≥ 2), with χ, ξ, α, β, γ, δ, k1, k2 > 0, p ≥ 2. In addition, the function f is smooth and satisfies that f(s) ≤ κ − μsl for all s ≥ 0, with κ ∈ ℝ, μ > 0, l > 1. It is shown that (i) if \(l>\max\{2k_{1},{2k_{1}n\over{2+n}}+{1\over{p-1}}\}\), then system possesses a global bounded weak solution and (ii) if \(k_{2}>\max\{2k_{1}-1,{2k_{1}n\over{2+n}}+{2-p\over{p-1}}\}\) with l > 2, then system possesses a global bounded weak solution.

具有 p-Laplacian 扩散和 logistic 源的吸引-排斥趋化系统的全局弱解法
本文关注的是以下具有 p-Laplacian 扩散和 logistic 源的吸引-排斥趋化系统 $$\left\{ {\matrix{{u_t} = \nabla \cdot (|\nabla u{|^{p - 2}}\nabla u) - \chi \nabla \cdot (u\nabla v) + \xi \nabla \cdot (u\nabla w) + f(u)、} hfill &;{x in \Omega ,\,t >;0,} \hfill \cr {{v_t} = \Delta v - \beta v + \alpha {u^{{k_1}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {0 = \Delta w - \delta w + \gamma {u^{{k_2}}},} \hfill &;{x in \Omega ,t > 0,} \hfill \cr {u(x,0) = {u_0}(x),\,\,v(x,0) = {v_0}(x),\,\,w(x,0) = {w_0}(x),} \hfill & {x in \Omega .}\fill \cr }}\这里的系统处于有界域 Ω ⊂ ℝn(n≥ 2) 中的同源 Neumann 边界条件下,其中 χ, ξ, α, β, γ, δ, k1, k2 > 0, p ≥ 2。此外,函数 f 是平稳的,且满足 f(s) ≤ κ - μsl 对于所有 s ≥ 0,κ∈ ℝ, μ > 0, l > 1。研究表明:(i) 如果 \(l>\max\{2k_{1},{2k_{1}n\over{2+n}}+{1\over{p-1}}\}), 则系统具有全局有界弱解;(ii) 如果 \(k_{2}>;\2k_{1}-1,{2k_{1}n/over{2+n}}+{2-p/over{p-1}}}),且 l > 2,则系统具有全局有界弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信