{"title":"Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source","authors":"Xiaoshan Wang, Zhongqian Wang, Zhe Jia","doi":"10.1007/s10473-024-0308-7","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the following attraction-repulsion chemotaxis system with <i>p</i>-Laplacian diffusion and logistic source </p><span>$$\\left\\{ {\\matrix{{{u_t} = \\nabla \\cdot (|\\nabla u{|^{p - 2}}\\nabla u) - \\chi \\nabla \\cdot (u\\nabla v) + \\xi \\nabla \\cdot (u\\nabla w) + f(u),} \\hfill & {x \\in \\Omega ,\\,\\,t > 0,} \\hfill \\cr {{v_t} = \\Delta v - \\beta v + \\alpha {u^{{k_1}}},} \\hfill & {x \\in \\Omega ,\\,\\,t > 0,} \\hfill \\cr {0 = \\Delta w - \\delta w + \\gamma {u^{{k_2}}},} \\hfill & {x \\in \\Omega ,\\,\\,t > 0,} \\hfill \\cr {u(x,0) = {u_0}(x),\\,\\,\\,v(x,0) = {v_0}(x),\\,\\,\\,w(x,0) = {w_0}(x),} \\hfill & {x \\in \\Omega .} \\hfill \\cr } } \\right.$$</span><p>The system here is under a homogenous Neumann boundary condition in a bounded domain Ω ⊂ ℝ<sup><i>n</i></sup>(<i>n</i> ≥ 2), with <i>χ</i>, <i>ξ</i>, <i>α</i>, <i>β</i>, <i>γ</i>, <i>δ</i>, <i>k</i><sub>1</sub>, <i>k</i><sub>2</sub> > 0, <i>p</i> ≥ 2. In addition, the function <i>f</i> is smooth and satisfies that <i>f</i>(<i>s</i>) ≤ κ − <i>μs</i><sup><i>l</i></sup> for all <i>s</i> ≥ 0, with κ ∈ ℝ, <i>μ</i> > 0, <i>l</i> > 1. It is shown that (i) if <span>\\(l>\\max\\{2k_{1},{2k_{1}n\\over{2+n}}+{1\\over{p-1}}\\}\\)</span>, then system possesses a global bounded weak solution and (ii) if <span>\\(k_{2}>\\max\\{2k_{1}-1,{2k_{1}n\\over{2+n}}+{2-p\\over{p-1}}\\}\\)</span> with <i>l</i> > 2, then system possesses a global bounded weak solution.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0308-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source
The system here is under a homogenous Neumann boundary condition in a bounded domain Ω ⊂ ℝn(n ≥ 2), with χ, ξ, α, β, γ, δ, k1, k2 > 0, p ≥ 2. In addition, the function f is smooth and satisfies that f(s) ≤ κ − μsl for all s ≥ 0, with κ ∈ ℝ, μ > 0, l > 1. It is shown that (i) if \(l>\max\{2k_{1},{2k_{1}n\over{2+n}}+{1\over{p-1}}\}\), then system possesses a global bounded weak solution and (ii) if \(k_{2}>\max\{2k_{1}-1,{2k_{1}n\over{2+n}}+{2-p\over{p-1}}\}\) with l > 2, then system possesses a global bounded weak solution.
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.