The limit cycle bifurcations of a whirling pendulum with piecewise smooth perturbations

IF 1.2 4区 数学 Q1 MATHEMATICS
Jihua Yang
{"title":"The limit cycle bifurcations of a whirling pendulum with piecewise smooth perturbations","authors":"Jihua Yang","doi":"10.1007/s10473-024-0319-4","DOIUrl":null,"url":null,"abstract":"<p>This paper deals with the problem of limit cycles for the whirling pendulum equation <i>ẋ</i> = <i>y, ẏ</i> = sin <i>x</i>(cos <i>x</i> − <i>r</i>) under piecewise smooth perturbations of polynomials of cos <i>x</i>, sin <i>x</i> and <i>y</i> of degree <i>n</i> with the switching line <i>x</i> = 0. The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations, which the generating functions of the associated first order Melnikov functions satisfy. Furthermore, the exact bound of a special case is given using the Chebyshev system. At the end, some numerical simulations are given to illustrate the existence of limit cycles.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"80 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0319-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the problem of limit cycles for the whirling pendulum equation = y, ẏ = sin x(cos xr) under piecewise smooth perturbations of polynomials of cos x, sin x and y of degree n with the switching line x = 0. The upper bounds of the number of limit cycles in both the oscillatory and the rotary regions are obtained using the Picard-Fuchs equations, which the generating functions of the associated first order Melnikov functions satisfy. Furthermore, the exact bound of a special case is given using the Chebyshev system. At the end, some numerical simulations are given to illustrate the existence of limit cycles.

具有片状平滑扰动的漩涡摆的极限周期分岔
本文讨论了旋摆方程 ẋ = y, ẏ = sin x(cos x - r) 在以 x = 0 为切换线的 n 阶 cos x、sin x 和 y 多项式的片断平滑扰动下的极限循环问题。利用相关一阶梅利尼科夫函数的生成函数满足的 Picard-Fuchs 方程,得到了振荡区和旋转区极限循环次数的上限。此外,还利用切比雪夫系统给出了一个特例的精确边界。最后,还给出了一些数值模拟来说明极限循环的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信