On a universal inequality for approximate phase isometries

IF 1.2 4区 数学 Q1 MATHEMATICS
Duanxu Dai, Haixin Que, Longfa Sun, Bentuo Zheng
{"title":"On a universal inequality for approximate phase isometries","authors":"Duanxu Dai, Haixin Que, Longfa Sun, Bentuo Zheng","doi":"10.1007/s10473-024-0303-z","DOIUrl":null,"url":null,"abstract":"<p>Let <i>X</i> and <i>Y</i> be two normed spaces. Let <span>\\({\\cal U}\\)</span> be a non-principal ultrafilter on ℕ. Let g: <i>X</i> → <i>Y</i> be a standard <i>ε</i>-phase isometry for some <i>ε</i> ≥ 0, i.e., <i>g</i>(0) = 0, and for all <i>u, v ϵ X</i>, </p><span>$$|\\,\\,|\\,||g(u) + g(v)|| \\pm ||g(u) - g(v)||\\,| - |\\,||u + v|| \\pm ||u - v||\\,|\\,\\,|\\, \\le \\varepsilon .$$</span><p>The mapping <i>g</i> is said to be a phase isometry provided that <i>ε</i> = 0. In this paper, we show the following universal inequality of <i>g</i>: for each <span>\\({u^ * } \\in {w^ * } - \\exp \\,\\,||{u^ * }||{B_{{X^ * }}}\\)</span>, there exist a phase function <span>\\({\\sigma _{{u^ * }}}:X \\to \\{ - 1,1\\} \\)</span> and <i>φ</i> ϵ <i>Y</i>* with <span>\\(||\\varphi || = ||{u^ * }|| \\equiv \\alpha \\)</span> satisfying that </p><span>$$|\\left\\langle {{u^ * },u} \\right\\rangle - {\\sigma _{{u^ * }}}(u)\\left\\langle {\\varphi ,g(u)} \\right\\rangle | \\le {5 \\over 2}\\varepsilon \\alpha ,\\,\\,\\,{\\rm{for}}\\,{\\rm{all}}\\,u \\in X.$$</span><p>In particular, let <i>X</i> be a smooth Banach space. Then we show the following: (1) the universal inequality holds for all <i>u</i>* ∈ <i>X</i>*; (2) the constant <span>\\({5 \\over 2}\\)</span> can be reduced to <span>\\({3 \\over 2}\\)</span> provided that <i>Y</i>* is strictly convex; (3) the existence of such a g implies the existence of a phase isometry Θ: <i>X</i> → <i>Y</i> such that <span>\\(\\Theta (u) = \\mathop {\\lim }\\limits_{n,{\\cal U}} {{g(nu)} \\over n}\\)</span> provided that <i>Y</i>** has the <i>w</i>*-Kadec-Klee property (for example, <i>Y</i> is both reflexive and locally uniformly convex).</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0303-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let X and Y be two normed spaces. Let \({\cal U}\) be a non-principal ultrafilter on ℕ. Let g: XY be a standard ε-phase isometry for some ε ≥ 0, i.e., g(0) = 0, and for all u, v ϵ X,

$$|\,\,|\,||g(u) + g(v)|| \pm ||g(u) - g(v)||\,| - |\,||u + v|| \pm ||u - v||\,|\,\,|\, \le \varepsilon .$$

The mapping g is said to be a phase isometry provided that ε = 0. In this paper, we show the following universal inequality of g: for each \({u^ * } \in {w^ * } - \exp \,\,||{u^ * }||{B_{{X^ * }}}\), there exist a phase function \({\sigma _{{u^ * }}}:X \to \{ - 1,1\} \) and φ ϵ Y* with \(||\varphi || = ||{u^ * }|| \equiv \alpha \) satisfying that

$$|\left\langle {{u^ * },u} \right\rangle - {\sigma _{{u^ * }}}(u)\left\langle {\varphi ,g(u)} \right\rangle | \le {5 \over 2}\varepsilon \alpha ,\,\,\,{\rm{for}}\,{\rm{all}}\,u \in X.$$

In particular, let X be a smooth Banach space. Then we show the following: (1) the universal inequality holds for all u* ∈ X*; (2) the constant \({5 \over 2}\) can be reduced to \({3 \over 2}\) provided that Y* is strictly convex; (3) the existence of such a g implies the existence of a phase isometry Θ: XY such that \(\Theta (u) = \mathop {\lim }\limits_{n,{\cal U}} {{g(nu)} \over n}\) provided that Y** has the w*-Kadec-Klee property (for example, Y is both reflexive and locally uniformly convex).

关于近似相等距的普遍不等式
让 X 和 Y 是两个规范空间。让 \({\cal U}\) 是ℕ上的一个非主超滤波器。对于某个 ε ≥ 0,让 g: X → Y 是一个标准的 ε 相等距,即g(0) = 0,并且对于所有 u、v ϵ X,$$||,\,|\,||g(u) + g(v)|| \pm |g(u) - g(v)||\,| - |\,|u + v|| \pm ||u - v||,|\,\,|,\le \varepsilon .$$只要 ε = 0,映射 g 就被称为相等几何。在本文中,我们证明了 g 的以下普遍不等式:对于每个 \({u^ * } \in {w^ * } - \exp \,\,||{u^ * }||{B_{{X^ * }}}\), 都存在一个相位函数 \({\sigma _{u^ * }}}:X \to \{ - 1,1\} \) and φ ϵ Y* with \(||\varphi || = ||{u^ * }|| \equiv \alpha \) satisfying that $$|\left\langle {{u^ * }、u} - {\sigma _{{u^ * }}}(u)\left\langle {\varphi ,g(u)} \right\rangle | \le {5 \over 2}\varepsilon \alpha ,\,\,{\rm{for}\,{\rm{all}}\,u \in X.$$特别地,让 X 是一个光滑的巴拿赫空间。然后我们证明以下几点:(1) 对于所有u*∈X*,普遍不等式都成立;(2) 常量\({5 \over 2}\)可以简化为\({3 \over 2}\),前提是Y*是严格凸的;(3) 这样一个g的存在意味着相等几何Θ的存在:X → Y such that \(θ (u) = \mathop {\lim }limits_{n,{\cal U}}{{g(nu)}overn}/),条件是 Y** 具有 w*-Kadec-Klee 属性(例如,Y 既是反折的,又是局部均匀凸的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信