{"title":"A generalized scalar auxiliary variable method for the time-dependent Ginzburg-Landau equations","authors":"Zhiyong Si","doi":"10.1007/s10473-024-0215-y","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, and this is confirmed by the numerical result, and also shows that the numerical algorithm is stable.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0215-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a generalized scalar auxiliary variable (SAV) method for the time-dependent Ginzburg-Landau equations. The backward Euler method is used for discretizing the temporal derivative of the time-dependent Ginzburg-Landau equations. In this method, the system is decoupled and linearized to avoid solving the non-linear equation at each step. The theoretical analysis proves that the generalized SAV method can preserve the maximum bound principle and energy stability, and this is confirmed by the numerical result, and also shows that the numerical algorithm is stable.
本文针对时变金兹堡-朗道方程开发了一种广义标量辅助变量(SAV)方法。后向欧拉法用于对时变金兹堡-朗道方程的时变导数进行离散化。在该方法中,系统被解耦和线性化,以避免在每一步都求解非线性方程。理论分析证明广义 SAV 方法可以保持最大约束原理和能量稳定性,数值结果也证实了这一点,同时还表明数值算法是稳定的。
期刊介绍:
Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981.
The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.