Sums of dual Toeplitz products on the orthogonal complements of Fock-Sobolev spaces

IF 1.2 4区 数学 Q1 MATHEMATICS
Yong Chen, Young Joo Lee
{"title":"Sums of dual Toeplitz products on the orthogonal complements of Fock-Sobolev spaces","authors":"Yong Chen, Young Joo Lee","doi":"10.1007/s10473-024-0302-0","DOIUrl":null,"url":null,"abstract":"<p>We consider dual Toeplitz operators on the orthogonal complements of the Fock-Sobolev spaces of all nonnegative real orders. First, for symbols in a certain class containing all bounded functions, we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero. Next, for bounded symbols, we construct a symbol map and exhibit a short exact sequence associated with the <i>C</i><sup>*</sup>-algebra generated by all dual Toeplitz operators with bounded symbols.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0302-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider dual Toeplitz operators on the orthogonal complements of the Fock-Sobolev spaces of all nonnegative real orders. First, for symbols in a certain class containing all bounded functions, we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero. Next, for bounded symbols, we construct a symbol map and exhibit a short exact sequence associated with the C*-algebra generated by all dual Toeplitz operators with bounded symbols.

Fock-Sobolev 空间正交补集上的对偶 Toeplitz 积之和
我们考虑所有非负实阶的 Fock-Sobolev 空间正交补集上的对偶 Toeplitz 算子。首先,对于包含所有有界函数的某类符号,我们研究了对偶托普利兹乘积的有限和的算子是紧凑算子还是零算子的问题。接下来,对于有界符号,我们构建了一个符号映射,并展示了一个与所有有界符号的对偶托普利兹算子生成的 C* 代数相关的简短精确序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信