The weighted Kato square root problem of elliptic operators having a BMO anti-symmetric part

IF 1.2 4区 数学 Q1 MATHEMATICS
Wenxian Ma, Sibei Yang
{"title":"The weighted Kato square root problem of elliptic operators having a BMO anti-symmetric part","authors":"Wenxian Ma, Sibei Yang","doi":"10.1007/s10473-024-0209-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>n</i> ≥ 2 and let <i>L</i> be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝ<sup><i>n</i></sup>. In this article, we consider the weighted Kato square root problem for <i>L</i>. More precisely, we prove that the square root <i>L</i><sup>1/2</sup> satisfies the weighted <i>L</i><sup><i>p</i></sup> estimates <span>\\(||{L^{1/2}}(f)|{|_{L_\\omega ^p({\\mathbb{R}^n})}} \\le C||\\nabla f|{|_{L_\\omega ^p({\\mathbb{R}^n};{\\mathbb{R}^n})}}\\)</span> for any <i>p</i> ∈ (1, ∞) and ω ∈ <i>A</i><sub><i>p</i></sub>(ℝ<sup><i>n</i></sup>) (the class of Muckenhoupt weights), and that <span>\\(||\\nabla f|{|_{L_\\omega ^p({\\mathbb{R}^n};{\\mathbb{R}^n})}} \\le C||{L^{1/2}}(f)|{|_{L_\\omega ^p({\\mathbb{R}^n})}}\\)</span> for any p ∈ (1, 2 + <i>ε</i>) and <i>ω</i> ∈ <i>A</i><sub><i>p</i></sub>(ℝ<sup><i>n</i></sup>) ∩ <span>\\(R{H_{({{2 + \\varepsilon } \\over p})\\prime }}({\\mathbb{R}^n})\\)</span> (the class of reverse Hölder weights), where ε ∈ (0, ∞) is a constant depending only on <i>n</i> and the operator <i>L</i>, and where <span>\\(({{2 + \\varepsilon } \\over p})\\prime \\)</span> denotes the Hölder conjugate exponent of <span>\\({{2 + \\varepsilon } \\over p}\\)</span>. Moreover, for any given <i>q</i> ∈ (2, ∞), we give a sufficient condition to obtain that <span>\\(||\\nabla f|{|_{L_\\omega ^p({\\mathbb{R}^n};{\\mathbb{R}^n})}} \\le C||{L^{1/2}}(f)|{|_{L_\\omega ^p({\\mathbb{R}^n})}}\\)</span> for any <i>p</i> ∈ (1, <i>q</i>) and <span>\\(\\omega \\in {A_p}({\\mathbb{R}^n}) \\cap R{H_{({q \\over p})\\prime }}({\\mathbb{R}^n})\\)</span>. As an application, we prove that when the coefficient matrix A that appears in <i>L</i> satisfies the small BMO condition, the Riesz transform ∇<i>L</i><sup>−1/2</sup> is bounded on <i>L</i><span>\n<sup><i>p</i></sup><sub><i>ω</i></sub>\n</span><i>(</i>ℝ<sup><i>n</i></sup>) for any given <i>p</i> ∈ (1, ∞) and ω ∈ <i>A</i><sub><i>p</i></sub>(ℝ<sup><i>n</i></sup>). Furthermore, applications to the weighted <i>L</i><sup>2</sup>-regularity problem with the Dirichlet or the Neumann boundary condition are also given.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"80 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0209-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let n ≥ 2 and let L be a second-order elliptic operator of divergence form with coefficients consisting of both an elliptic symmetric part and a BMO anti-symmetric part in ℝn. In this article, we consider the weighted Kato square root problem for L. More precisely, we prove that the square root L1/2 satisfies the weighted Lp estimates \(||{L^{1/2}}(f)|{|_{L_\omega ^p({\mathbb{R}^n})}} \le C||\nabla f|{|_{L_\omega ^p({\mathbb{R}^n};{\mathbb{R}^n})}}\) for any p ∈ (1, ∞) and ω ∈ Ap(ℝn) (the class of Muckenhoupt weights), and that \(||\nabla f|{|_{L_\omega ^p({\mathbb{R}^n};{\mathbb{R}^n})}} \le C||{L^{1/2}}(f)|{|_{L_\omega ^p({\mathbb{R}^n})}}\) for any p ∈ (1, 2 + ε) and ωAp(ℝn) ∩ \(R{H_{({{2 + \varepsilon } \over p})\prime }}({\mathbb{R}^n})\) (the class of reverse Hölder weights), where ε ∈ (0, ∞) is a constant depending only on n and the operator L, and where \(({{2 + \varepsilon } \over p})\prime \) denotes the Hölder conjugate exponent of \({{2 + \varepsilon } \over p}\). Moreover, for any given q ∈ (2, ∞), we give a sufficient condition to obtain that \(||\nabla f|{|_{L_\omega ^p({\mathbb{R}^n};{\mathbb{R}^n})}} \le C||{L^{1/2}}(f)|{|_{L_\omega ^p({\mathbb{R}^n})}}\) for any p ∈ (1, q) and \(\omega \in {A_p}({\mathbb{R}^n}) \cap R{H_{({q \over p})\prime }}({\mathbb{R}^n})\). As an application, we prove that when the coefficient matrix A that appears in L satisfies the small BMO condition, the Riesz transform ∇L−1/2 is bounded on L pω (n) for any given p ∈ (1, ∞) and ω ∈ Ap(ℝn). Furthermore, applications to the weighted L2-regularity problem with the Dirichlet or the Neumann boundary condition are also given.

具有 BMO 反对称部分的椭圆算子的加权加藤平方根问题
设 n ≥ 2,设 L 为发散形式的二阶椭圆算子,其系数由 ℝn 中的椭圆对称部分和 BMO 反对称部分组成。更准确地说,我们证明平方根 L1/2 满足加权 Lp 估计值 \(||{L^{1/2}}(f)|{{|{L_\omega ^p({\mathbb{R}^n})}}.|{L^{1/2}}(f)|{{L_\omega ^p({/mathbb{R}^n})}}};{对于任意 p∈ (1, ∞) 和 ω∈ Ap(ℝn)(Muckenhoupt 权重类),并且 \(||\nabla f|{|{_L_\omega ^p({/mathbb{R}^n};{/mathbb{R}^n})}}})。\对于任意 p∈ (1, 2 + ε) 且 ω∈ Ap(ℝn) ∩\(R{H_{({{2 + \varepsilon } \over p})\prime}}({/\mathbb{R}^n})}(反向荷尔德权重类),|{{L^{1/2}}(f)|{|_{L_\omega ^p({/mathbb{R}^n})}}(le C||{L^{1/2}}(f)|{|{{L_\omega ^p({\mathbb{R}^n})}}\)、其中 ε∈ (0, ∞) 是一个常数,只取决于 n 和算子 L,而 \(({{2 + \varepsilon } \over p})\prime \) 表示 \({{2 + \varepsilon } \over p}\) 的霍尔德共轭指数。此外,对于任意给定的 q∈ (2, ∞),我们给出了一个充分条件,即 \(||\nabla f|{|{L_\omega ^p({\mathbb{R}^n};{\mathbb{R}^n})}})\对于任意 p∈ (1, q) 并且 \(\omega \in {A_p}({\mathbb{R}^n}) \cap R{H_{({q \over p})\prime }}({\mathbb{R}^n})\).作为应用,我们证明了当 L 中出现的系数矩阵 A 满足小 BMO 条件时,对于任意给定的 p∈ (1, ∞) 和 ω∈ Ap(ℝn) ,里兹变换 ∇L-1/2 在 Lpω(ℝn) 上是有界的。此外,还给出了迪里夏特或诺伊曼边界条件下加权 L2- 不规则性问题的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信