The limiting profile of solutions for semilinear elliptic systems with a shrinking self-focusing core

IF 1.2 4区 数学 Q1 MATHEMATICS
Ke Jin, Ying Shi, Huafei Xie
{"title":"The limiting profile of solutions for semilinear elliptic systems with a shrinking self-focusing core","authors":"Ke Jin, Ying Shi, Huafei Xie","doi":"10.1007/s10473-024-0212-1","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the semilinear elliptic equation systems </p><span>$$\\left\\{ {\\matrix{{ - \\Delta u + u = \\alpha {Q_n}(x)|u{|^{\\alpha - 2}}|v{|^\\beta }u\\,\\,{\\rm{in}}\\,{\\mathbb{R}^N},} \\hfill \\cr { - \\Delta v + v = \\beta Q(x)|u{|^\\alpha }|v{|^{\\beta - 2}}v\\,\\,\\,\\,{\\rm{in}}\\,{\\mathbb{R}^N},} \\hfill \\cr } } \\right.$$</span><p>\nwhere <span>\\(N\\geqslant 3,\\,\\,\\alpha ,\\,\\,\\beta &gt; 1,\\,\\alpha + \\beta &lt; {2^ * },\\,{2^ * } = {{2N} \\over {N - 2}}\\)</span> and <i>Q</i><sub><i>n</i></sub> are bounded given functions whose self-focusing cores {<i>x</i> ∈ ℍ<sup><i>N</i></sup><i>Q</i><sub><i>n</i></sub>(<i>x</i>) &gt; 0} shrink to a set with finitely many points as <i>n</i> → ∞. Motivated by the work of Fang and Wang [13], we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points, and we build the localized concentrated bound state solutions for the above equation systems.</p>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10473-024-0212-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider the semilinear elliptic equation systems

$$\left\{ {\matrix{{ - \Delta u + u = \alpha {Q_n}(x)|u{|^{\alpha - 2}}|v{|^\beta }u\,\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr { - \Delta v + v = \beta Q(x)|u{|^\alpha }|v{|^{\beta - 2}}v\,\,\,\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr } } \right.$$

where \(N\geqslant 3,\,\,\alpha ,\,\,\beta > 1,\,\alpha + \beta < {2^ * },\,{2^ * } = {{2N} \over {N - 2}}\) and Qn are bounded given functions whose self-focusing cores {x ∈ ℍNQn(x) > 0} shrink to a set with finitely many points as n → ∞. Motivated by the work of Fang and Wang [13], we use variational methods to study the limiting profile of ground state solutions which are concentrated at one point of the set with finitely many points, and we build the localized concentrated bound state solutions for the above equation systems.

具有收缩自聚焦核心的半线性椭圆系统解的极限轮廓
在本文中,我们考虑半线性椭圆方程系统 $$\left\{ {\matrix{{ -\Delta u + u = \alpha {Q_n}(x)|u{|^{\alpha - 2}}|v{|^\beta }u\、\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr { - \Delta v + v = \beta Q(x)|u{|^\alpha }|v{|^{\beta - 2}}v\,\,{\rm{in}}\,{\mathbb{R}^N},} \hfill \cr }}\right.$$where \(N\geqslant 3,\,\,\alpha ,\,\beta > 1,\,\alpha + \beta < {2^ * },\,{2^ * })= {{2N}\over{N-2}})和 Qn 都是有界给定函数,当 n → ∞ 时,它们的自聚焦核心 {x∈ ℍNQn(x) > 0} 会收缩为具有有限个点的集合。受方和王[13]的研究启发,我们利用变分法研究了集中于有限多点集合中某一点的基态解的极限轮廓,并建立了上述方程系统的局部集中边界解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信