Zhenhao Li, Song Yang, Xiaoning Liu, Guoqing Xiao, Hongzhan San, Yanru Zhang, Wei Wang, Zhibo Yang
{"title":"Grinding force model for ultrasonic assisted grinding of γ-TiAl intermetallic compounds and experimental validation","authors":"Zhenhao Li, Song Yang, Xiaoning Liu, Guoqing Xiao, Hongzhan San, Yanru Zhang, Wei Wang, Zhibo Yang","doi":"10.1515/rams-2023-0167","DOIUrl":null,"url":null,"abstract":"The introduction of ultrasonic vibration in the grinding process of γ-TiAl intermetallic compounds can significantly reduce its processing difficulty. It is of great significance to understand the grinding mechanism of γ-TiAl intermetallic compounds and improve the processing efficiency by studying the mechanism of ordinary grinding of abrasive grains. Based on this, this study proposes a grinding force prediction model based on single-grain ultrasonic assisted grinding (UAG) chip formation mechanism. First, the prediction model of grinding force is established based on the chip formation mechanism of abrasive sliding ordinary grinding and the theory of ultrasonic assisted machining, considering the plastic deformation and shear effect in the process of material processing. Second, the UAG experiment of γ-TiAl intermetallic compounds was carried out by using diamond grinding wheel, and the unknown coefficient in the model was determined. Finally, the predicted values and experimental values of grinding force under different parameters were compared to verify the rationality of the model. It was found that the maximum deviation between the predicted value of tangential force and the actual value is 23%, and the maximum deviation between the predicted value of normal force and the actual value is 21.7%. In addition, by changing the relevant parameters, the model can predict the grinding force of different metal materials under different processing parameters, which is helpful for optimizing the UAG parameters and improving the processing efficiency.","PeriodicalId":54484,"journal":{"name":"Reviews on Advanced Materials Science","volume":"23 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews on Advanced Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/rams-2023-0167","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of ultrasonic vibration in the grinding process of γ-TiAl intermetallic compounds can significantly reduce its processing difficulty. It is of great significance to understand the grinding mechanism of γ-TiAl intermetallic compounds and improve the processing efficiency by studying the mechanism of ordinary grinding of abrasive grains. Based on this, this study proposes a grinding force prediction model based on single-grain ultrasonic assisted grinding (UAG) chip formation mechanism. First, the prediction model of grinding force is established based on the chip formation mechanism of abrasive sliding ordinary grinding and the theory of ultrasonic assisted machining, considering the plastic deformation and shear effect in the process of material processing. Second, the UAG experiment of γ-TiAl intermetallic compounds was carried out by using diamond grinding wheel, and the unknown coefficient in the model was determined. Finally, the predicted values and experimental values of grinding force under different parameters were compared to verify the rationality of the model. It was found that the maximum deviation between the predicted value of tangential force and the actual value is 23%, and the maximum deviation between the predicted value of normal force and the actual value is 21.7%. In addition, by changing the relevant parameters, the model can predict the grinding force of different metal materials under different processing parameters, which is helpful for optimizing the UAG parameters and improving the processing efficiency.
期刊介绍:
Reviews on Advanced Materials Science is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in the area of theoretical and experimental studies of advanced materials. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Reviews on Advanced Materials Science is listed inter alia by Clarivate Analytics (formerly Thomson Reuters) - Current Contents/Physical, Chemical, and Earth Sciences (CC/PC&ES), JCR and SCIE. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.