Interaction semantic segmentation network via progressive supervised learning

IF 2.4 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Interaction semantic segmentation network via progressive supervised learning","authors":"","doi":"10.1007/s00138-023-01500-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Semantic segmentation requires both low-level details and high-level semantics, without losing too much detail and ensuring the speed of inference. Most existing segmentation approaches leverage low- and high-level features from pre-trained models. We propose an interaction semantic segmentation network via Progressive Supervised Learning (ISSNet). Unlike a simple fusion of two sets of features, we introduce an information interaction module to embed semantics into image details, they jointly guide the response of features in an interactive way. We develop a simple yet effective boundary refinement module to provide refined boundary features for matching corresponding semantic. We introduce a progressive supervised learning strategy throughout the training level to significantly promote network performance, not architecture level. Our proposed ISSNet shows optimal inference time. We perform extensive experiments on four datasets, including Cityscapes, HazeCityscapes, RainCityscapes and CamVid. In addition to performing better in fine weather, proposed ISSNet also performs well on rainy and foggy days. We also conduct ablation study to demonstrate the role of our proposed component. Code is available at: https://github.com/Ruini94/ISSNet</p>","PeriodicalId":51116,"journal":{"name":"Machine Vision and Applications","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Vision and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00138-023-01500-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic segmentation requires both low-level details and high-level semantics, without losing too much detail and ensuring the speed of inference. Most existing segmentation approaches leverage low- and high-level features from pre-trained models. We propose an interaction semantic segmentation network via Progressive Supervised Learning (ISSNet). Unlike a simple fusion of two sets of features, we introduce an information interaction module to embed semantics into image details, they jointly guide the response of features in an interactive way. We develop a simple yet effective boundary refinement module to provide refined boundary features for matching corresponding semantic. We introduce a progressive supervised learning strategy throughout the training level to significantly promote network performance, not architecture level. Our proposed ISSNet shows optimal inference time. We perform extensive experiments on four datasets, including Cityscapes, HazeCityscapes, RainCityscapes and CamVid. In addition to performing better in fine weather, proposed ISSNet also performs well on rainy and foggy days. We also conduct ablation study to demonstrate the role of our proposed component. Code is available at: https://github.com/Ruini94/ISSNet

通过渐进式监督学习实现交互语义分割网络
摘要 语义分割既需要低层次的细节,也需要高层次的语义,同时又不能丢失太多细节,还要确保推理速度。现有的大多数分割方法都是利用预先训练好的模型中的低级和高级特征。我们提出了一种通过渐进监督学习的交互语义分割网络(ISSNet)。与两组特征的简单融合不同,我们引入了信息交互模块,将语义嵌入图像细节,它们以交互的方式共同引导特征响应。我们开发了一个简单而有效的边界细化模块,为匹配相应语义提供细化的边界特征。我们在整个训练级别引入了渐进式监督学习策略,以显著提高网络性能,而不是架构级别。我们所提出的 ISSNet 可以达到最佳推理时间。我们在四个数据集上进行了广泛的实验,包括城市景观、阴霾城市景观、雨水城市景观和 CamVid。除了在晴朗天气中表现较好外,所提出的 ISSNet 在雨天和雾天也表现出色。我们还进行了消融研究,以证明我们提出的组件的作用。代码见:https://github.com/Ruini94/ISSNet
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine Vision and Applications
Machine Vision and Applications 工程技术-工程:电子与电气
CiteScore
6.30
自引率
3.00%
发文量
84
审稿时长
8.7 months
期刊介绍: Machine Vision and Applications publishes high-quality technical contributions in machine vision research and development. Specifically, the editors encourage submittals in all applications and engineering aspects of image-related computing. In particular, original contributions dealing with scientific, commercial, industrial, military, and biomedical applications of machine vision, are all within the scope of the journal. Particular emphasis is placed on engineering and technology aspects of image processing and computer vision. The following aspects of machine vision applications are of interest: algorithms, architectures, VLSI implementations, AI techniques and expert systems for machine vision, front-end sensing, multidimensional and multisensor machine vision, real-time techniques, image databases, virtual reality and visualization. Papers must include a significant experimental validation component.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信