Linear Programming on the Stiefel Manifold

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Mengmeng Song, Yong Xia
{"title":"Linear Programming on the Stiefel Manifold","authors":"Mengmeng Song, Yong Xia","doi":"10.1137/23m1552243","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 718-741, March 2024. <br/> Abstract. Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all [math]-tuples of orthonormal vectors in [math] satisfying [math] additional linear constraints. Despite the classical polynomial-time solvable case [math], general (LPS) is NP-hard. According to the Shapiro–Barvinok–Pataki theorem, (LPS) admits an exact semidefinite programming relaxation when [math], which is tight when [math]. Surprisingly, we can greatly strengthen this sufficient exactness condition to [math], which covers the classical case [math] and [math]. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order local necessary optimality conditions are sufficient for global optimality when [math].","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Optimization, Volume 34, Issue 1, Page 718-741, March 2024.
Abstract. Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all [math]-tuples of orthonormal vectors in [math] satisfying [math] additional linear constraints. Despite the classical polynomial-time solvable case [math], general (LPS) is NP-hard. According to the Shapiro–Barvinok–Pataki theorem, (LPS) admits an exact semidefinite programming relaxation when [math], which is tight when [math]. Surprisingly, we can greatly strengthen this sufficient exactness condition to [math], which covers the classical case [math] and [math]. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order local necessary optimality conditions are sufficient for global optimality when [math].
Stiefel Manifold 上的线性规划
SIAM 优化期刊》,第 34 卷,第 1 期,第 718-741 页,2024 年 3 月。 摘要首次研究了 Stiefel 流形(LPS)上的线性规划。它旨在最小化[math]中所有[math]正交向量的[math]元组集合上满足[math]附加线性约束的线性目标函数。尽管有经典的多项式时间可解情况[math],但一般(LPS)是 NP 难的。根据 Shapiro-Barvinok-Pataki 定理,当[math]时,(LPS)允许精确的半定式编程松弛,而当[math]时,(LPS)是紧密的。令人惊奇的是,我们可以将这一充分精确性条件大大强化为[math],它涵盖了经典情况[math]和[math]。将(LPS)视为平稳非线性编程问题,我们揭示了一个很好的性质,即在线性独立约束条件下,当[math]时,标准的一阶和二阶局部必要最优条件对全局最优是充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信