{"title":"Linear Programming on the Stiefel Manifold","authors":"Mengmeng Song, Yong Xia","doi":"10.1137/23m1552243","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 1, Page 718-741, March 2024. <br/> Abstract. Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all [math]-tuples of orthonormal vectors in [math] satisfying [math] additional linear constraints. Despite the classical polynomial-time solvable case [math], general (LPS) is NP-hard. According to the Shapiro–Barvinok–Pataki theorem, (LPS) admits an exact semidefinite programming relaxation when [math], which is tight when [math]. Surprisingly, we can greatly strengthen this sufficient exactness condition to [math], which covers the classical case [math] and [math]. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order local necessary optimality conditions are sufficient for global optimality when [math].","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1552243","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 1, Page 718-741, March 2024. Abstract. Linear programming on the Stiefel manifold (LPS) is studied for the first time. It aims at minimizing a linear objective function over the set of all [math]-tuples of orthonormal vectors in [math] satisfying [math] additional linear constraints. Despite the classical polynomial-time solvable case [math], general (LPS) is NP-hard. According to the Shapiro–Barvinok–Pataki theorem, (LPS) admits an exact semidefinite programming relaxation when [math], which is tight when [math]. Surprisingly, we can greatly strengthen this sufficient exactness condition to [math], which covers the classical case [math] and [math]. Regarding (LPS) as a smooth nonlinear programming problem, we reveal a nice property that under the linear independence constraint qualification, the standard first- and second-order local necessary optimality conditions are sufficient for global optimality when [math].
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.