Dynamical Behavior and Expressions of Solutions of a Class of Higher-Order Nonlinear Difference Equations

IF 1.3 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ghada AlNemer, Lama Sh. Aljoufi, A. M. Ahmed, Samir Al Mohammady, M. Zakarya, H. M. Rezk
{"title":"Dynamical Behavior and Expressions of Solutions of a Class of Higher-Order Nonlinear Difference Equations","authors":"Ghada AlNemer, Lama Sh. Aljoufi, A. M. Ahmed, Samir Al Mohammady, M. Zakarya, H. M. Rezk","doi":"10.1155/2024/7104474","DOIUrl":null,"url":null,"abstract":"The aim of this article is to get the forms of the solutions of the following nonlinear higher-order difference equations <span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"-0.0498162 -12.2582 32.251 16.2017\" width=\"32.251pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,10.448,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,16.008,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,24.62,0)\"></path></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"35.8331838 -12.2582 45.521 16.2017\" width=\"45.521pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,35.883,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.381,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,47.362,3.132)\"><use xlink:href=\"#g50-116\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,50.829,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,56.39,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,60.821,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,65.453,3.132)\"><use xlink:href=\"#g54-36\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,71.014,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,76.048,0)\"></path></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"84.2651838 -12.2582 7.631 16.2017\" width=\"7.631pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,84.315,0)\"></path></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"94.8011838 -12.2582 16.777 16.2017\" width=\"16.777pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,94.851,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,103.997,0)\"><use xlink:href=\"#g117-37\"></use></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"114.4831838 -12.2582 63.552 16.2017\" width=\"63.552pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,114.533,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,124.127,-5.741)\"><use xlink:href=\"#g50-108\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,124.127,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,126.594,3.784)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,132.154,3.784)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,137.13,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,144.111,3.132)\"><use xlink:href=\"#g50-116\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,147.578,3.132)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,153.138,3.132)\"><use xlink:href=\"#g50-52\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,157.57,3.132)\"><use xlink:href=\"#g50-109\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,160.037,3.132)\"><use xlink:href=\"#g54-36\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,165.597,3.132)\"><use xlink:href=\"#g50-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,170.623,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,175.121,0)\"></path></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"180.2141838 -12.2582 16.138 16.2017\" width=\"16.138pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,180.264,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,188.771,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"199.98418379999998 -12.2582 9.204 16.2017\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,200.034,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,206.274,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"211.3671838 -12.2582 9.204 16.2017\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,211.417,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,217.657,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"222.7501838 -12.2582 9.204 16.2017\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,222.8,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,229.04,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"16.2017pt\" style=\"vertical-align:-3.943501pt\" version=\"1.1\" viewbox=\"234.13318379999998 -12.2582 18.971 16.2017\" width=\"18.971pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,234.183,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,239.326,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,244.47,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,249.646,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span></span> where the initial conditions <span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 19.952 14.8173\" width=\"19.952pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-244\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,6.981,3.132)\"><use xlink:href=\"#g54-33\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.541,3.132)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.988,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"22.0811838 -9.28833 16.763 14.8173\" width=\"16.763pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.131,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.263,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"42.4761838 -9.28833 9.204 14.8173\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,42.526,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,48.766,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"53.8591838 -9.28833 9.204 14.8173\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,53.909,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,60.149,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"65.2421838 -9.28833 9.204 14.8173\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,65.292,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,71.532,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"76.6251838 -9.28833 18.427 14.8173\" width=\"18.427pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,76.675,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,81.818,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,86.961,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,92.138,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"14.8173pt\" style=\"vertical-align:-5.52897pt\" version=\"1.1\" viewbox=\"97.23118380000001 -9.28833 32.86 14.8173\" width=\"32.86pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,97.281,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,103.521,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,112.966,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,123.502,0)\"><use xlink:href=\"#g113-50\"></use></g></svg></span> and <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.035 11.5564\" width=\"17.035pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-108\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.171,0)\"></path></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"20.617183800000003 -9.28833 13.715 11.5564\" width=\"13.715pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,20.667,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,25.178,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.418,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"36.5111838 -9.28833 9.204 11.5564\" width=\"9.204pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,36.561,0)\"><use xlink:href=\"#g113-51\"></use></g><g transform=\"matrix(.013,0,0,-0.013,42.801,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"47.8941838 -9.28833 18.047 11.5564\" width=\"18.047pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,47.944,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,53.087,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.23,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,61.228,0)\"></path></g></svg></span> are arbitrary real numbers. Also, we examine stability, boundedness, oscillation, and the periodic nature of these solutions.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":"228 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/7104474","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this article is to get the forms of the solutions of the following nonlinear higher-order difference equations where the initial conditions and are arbitrary real numbers. Also, we examine stability, boundedness, oscillation, and the periodic nature of these solutions.
一类高阶非线性差分方程的动态行为和解的表达式
本文旨在获得以下非线性高阶差分方程的解的形式,其中初始条件和为任意实数。此外,我们还研究了这些解的稳定性、有界性、振荡和周期性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Dynamics in Nature and Society
Discrete Dynamics in Nature and Society 综合性期刊-数学跨学科应用
CiteScore
3.00
自引率
0.00%
发文量
598
审稿时长
3 months
期刊介绍: The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信