On some semi-parametric estimates for European option prices

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Carlo Marinelli
{"title":"On some semi-parametric estimates for European option prices","authors":"Carlo Marinelli","doi":"10.1017/jpr.2023.94","DOIUrl":null,"url":null,"abstract":"We show that an estimate by de la Peña, Ibragimov, and Jordan for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223000943_inline1.png\" /> <jats:tex-math> ${\\mathbb{E}}(X-c)^+$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, with <jats:italic>c</jats:italic> a constant and <jats:italic>X</jats:italic> a random variable of which the mean, the variance, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223000943_inline2.png\" /> <jats:tex-math> $\\mathbb{P}(X \\leqslant c)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> are known, implies an estimate by Scarf on the infimum of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0021900223000943_inline3.png\" /> <jats:tex-math> ${\\mathbb{E}}(X \\wedge c)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> over the set of positive random variables <jats:italic>X</jats:italic> with fixed mean and variance. This also shows, as a consequence, that the former estimate implies an estimate by Lo on European option prices.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"10 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.94","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We show that an estimate by de la Peña, Ibragimov, and Jordan for ${\mathbb{E}}(X-c)^+$ , with c a constant and X a random variable of which the mean, the variance, and $\mathbb{P}(X \leqslant c)$ are known, implies an estimate by Scarf on the infimum of ${\mathbb{E}}(X \wedge c)$ over the set of positive random variables X with fixed mean and variance. This also shows, as a consequence, that the former estimate implies an estimate by Lo on European option prices.
关于欧洲期权价格的一些半参数估计
我们证明了德拉佩尼亚、伊布拉吉莫夫和乔丹对${mathbb{E}}(X-c)^+$的估计,其中c是一个常数,X是一个随机变量,其均值、方差和$\mathbb{P}(X leqslant c)$都是已知的,这意味着斯卡夫对具有固定均值和方差的正随机变量X集合上的${mathbb{E}}(X wedge c)$的下确值的估计。由此也可以看出,前一个估计意味着罗对欧式期权价格的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信