Inference on the intraday spot volatility from high-frequency order prices with irregular microstructure noise

IF 0.7 4区 数学 Q3 STATISTICS & PROBABILITY
Markus Bibinger
{"title":"Inference on the intraday spot volatility from high-frequency order prices with irregular microstructure noise","authors":"Markus Bibinger","doi":"10.1017/jpr.2023.96","DOIUrl":null,"url":null,"abstract":"We consider estimation of the spot volatility in a stochastic boundary model with one-sided microstructure noise for high-frequency limit order prices. Based on discrete, noisy observations of an Itô semimartingale with jumps and general stochastic volatility, we present a simple and explicit estimator using local order statistics. We establish consistency and stable central limit theorems as asymptotic properties. The asymptotic analysis builds upon an expansion of tail probabilities for the order statistics based on a generalized arcsine law. In order to use the involved distribution of local order statistics for a bias correction, an efficient numerical algorithm is developed. We demonstrate the finite-sample performance of the estimation in a Monte Carlo simulation.","PeriodicalId":50256,"journal":{"name":"Journal of Applied Probability","volume":"14 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/jpr.2023.96","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

We consider estimation of the spot volatility in a stochastic boundary model with one-sided microstructure noise for high-frequency limit order prices. Based on discrete, noisy observations of an Itô semimartingale with jumps and general stochastic volatility, we present a simple and explicit estimator using local order statistics. We establish consistency and stable central limit theorems as asymptotic properties. The asymptotic analysis builds upon an expansion of tail probabilities for the order statistics based on a generalized arcsine law. In order to use the involved distribution of local order statistics for a bias correction, an efficient numerical algorithm is developed. We demonstrate the finite-sample performance of the estimation in a Monte Carlo simulation.
从具有不规则微观结构噪声的高频订单价格推断日内现货波动率
我们考虑在一个具有单边微观结构噪声的随机边界模型中,对高频限价订单价格的现货波动率进行估计。基于对具有跳跃和一般随机波动性的 Itô semimartingale 的离散、噪声观测,我们提出了一种使用局部订单统计的简单而明确的估计方法。我们建立了一致性和稳定的中心极限定理作为渐近特性。渐近分析建立在基于广义 arcsine 定律的阶次统计量尾部概率扩展的基础上。为了利用局部阶次统计的相关分布进行偏差修正,我们开发了一种高效的数值算法。我们在蒙特卡罗模拟中演示了估计的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Probability
Journal of Applied Probability 数学-统计学与概率论
CiteScore
1.50
自引率
10.00%
发文量
92
审稿时长
6-12 weeks
期刊介绍: Journal of Applied Probability is the oldest journal devoted to the publication of research in the field of applied probability. It is an international journal published by the Applied Probability Trust, and it serves as a companion publication to the Advances in Applied Probability. Its wide audience includes leading researchers across the entire spectrum of applied probability, including biosciences applications, operations research, telecommunications, computer science, engineering, epidemiology, financial mathematics, the physical and social sciences, and any field where stochastic modeling is used. A submission to Applied Probability represents a submission that may, at the Editor-in-Chief’s discretion, appear in either the Journal of Applied Probability or the Advances in Applied Probability. Typically, shorter papers appear in the Journal, with longer contributions appearing in the Advances.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信