Solutions of a quasilinear Schrödinger–Poisson system with linearly bounded nonlinearities

{"title":"Solutions of a quasilinear Schrödinger–Poisson system with linearly bounded nonlinearities","authors":"","doi":"10.1007/s00030-023-00912-5","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>In this paper, we are concerned with the following quasilinear Schrödinger–Poisson system <span> <span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} -\\Delta u+V(x)u+ K(x)\\phi u=f(x,u),\\quad &amp;{}x\\in {\\mathbb {R}}^3,\\\\ -\\Delta \\phi -\\varepsilon ^4\\Delta _4\\phi = K(x) u^2, &amp;{}x\\in {\\mathbb {R}}^3, \\end{array}\\right. } \\end{aligned}$$</span> </span>where <span> <span>\\(\\varepsilon \\)</span> </span> is a positive parameter and <em>f</em> is linearly bounded in <em>u</em> at infinity. Under suitable assumptions on <em>V</em>, <em>K</em> and <em>f</em>, we establish the existence and asymptotic behavior of ground state solutions to the system. We prove that they converge to the solutions of the classic Schrödinger–Poisson system associated as <span> <span>\\(\\varepsilon \\)</span> </span> tends to zero. </p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00912-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the following quasilinear Schrödinger–Poisson system $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+ K(x)\phi u=f(x,u),\quad &{}x\in {\mathbb {R}}^3,\\ -\Delta \phi -\varepsilon ^4\Delta _4\phi = K(x) u^2, &{}x\in {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$ where \(\varepsilon \) is a positive parameter and f is linearly bounded in u at infinity. Under suitable assumptions on V, K and f, we establish the existence and asymptotic behavior of ground state solutions to the system. We prove that they converge to the solutions of the classic Schrödinger–Poisson system associated as \(\varepsilon \) tends to zero.

具有线性约束非线性的准线性薛定谔-泊松系统的解
Abstract In this paper, we are concerned with following quasilinear Schrödinger-Poisson system $$\begin{aligned} {\left\{ \begin{array}{ll} -\Delta u+V(x)u+ K(x)\phi u=f(x,u),\quad &;{}x\in {\mathbb {R}}^3,\ -\Delta \phi -\varepsilon ^4\Delta _4\phi = K(x) u^2, &{}x\in {\mathbb {R}}^3,\end{array}\right.}\end{aligned}$$ 其中 \(\varepsilon \)是一个正参数,f 在无穷远处的 u 中是线性有界的。根据对 V、K 和 f 的适当假设,我们建立了系统的基态解的存在性和渐近行为。我们证明,当 \(\varepsilon \)趋于零时,它们收敛于与经典薛定谔-泊松系统相关的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信