Trace Operator on von Koch’s Snowflake

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Krystian Kazaniecki, Michał Wojciechowski
{"title":"Trace Operator on von Koch’s Snowflake","authors":"Krystian Kazaniecki, Michał Wojciechowski","doi":"10.1007/s11118-024-10124-w","DOIUrl":null,"url":null,"abstract":"<p>We study properties of the boundary trace operator on the Sobolev space <span>\\(W^1_1(\\Omega )\\)</span>. Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. <b>222</b>(1), 1-14 2016), we define a surjective operator <span>\\(Tr: W^1_1(\\Omega _K)\\rightarrow X(\\Omega _K)\\)</span>, where <span>\\(\\Omega _K\\)</span> is von Koch’s snowflake and <span>\\(X(\\Omega _K)\\)</span> is a trace space with the quotient norm. Since <span>\\(\\Omega _K\\)</span> is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to <i>Tr</i>, i.e. a linear operator <span>\\(S: X(\\Omega _K) \\rightarrow W^1_1(\\Omega _K)\\)</span> such that <span>\\(Tr \\circ S= Id_{X(\\Omega _K)}\\)</span>. In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as <span>\\(\\ell _1\\)</span>. As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue <b>2</b>, 277-282 1979) about non-existence of the right inverse for domain <span>\\(\\Omega \\)</span> with regular boundary, which explains Banach space geometry cause for this phenomenon.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10124-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We study properties of the boundary trace operator on the Sobolev space \(W^1_1(\Omega )\). Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. 222(1), 1-14 2016), we define a surjective operator \(Tr: W^1_1(\Omega _K)\rightarrow X(\Omega _K)\), where \(\Omega _K\) is von Koch’s snowflake and \(X(\Omega _K)\) is a trace space with the quotient norm. Since \(\Omega _K\) is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to Tr, i.e. a linear operator \(S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)\) such that \(Tr \circ S= Id_{X(\Omega _K)}\). In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as \(\ell _1\). As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue 2, 277-282 1979) about non-existence of the right inverse for domain \(\Omega \) with regular boundary, which explains Banach space geometry cause for this phenomenon.

Abstract Image

冯-科赫雪花上的微量运算符
我们研究 Sobolev 空间 \(W^1_1(\Omega )\) 上边界迹算子的性质。利用 Koskela 和 Zhang 的密度结果(Arch.Ration.Mech.Anal.222(1), 1-14 2016),我们定义了一个弹射算子 (Tr:W^1_1(\Omega _K)\rightarrow X(\Omega_K)\),其中 \(\Omega _K\)是冯-科赫的雪花,而 \(X(\Omega_K)\)是具有商规范的迹空间。由于 \(\Omega _K\) 是一个均匀域,其边界是指数严格大于 1 的阿福规则域,因此 L. Malý (2017)证明存在一个 Tr 的右逆,即一个线性算子 \(S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)\) ,使得 \(Tr \circ S= Id_{X(\Omega _K)}\).在本文中,我们基于 von Koch 雪花的几何结构,提供了一个不同的、纯粹的组合证明。此外,我们把迹空间的同构类确定为 \(\ell _1\)。作为我们方法的额外结果,我们得到了关于具有规则边界的域\(\Omega \)不存在右逆的皮特尔定理(特刊 2, 277-282 1979)的一个简单证明,它解释了巴拿赫空间几何造成这一现象的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信