{"title":"Trace Operator on von Koch’s Snowflake","authors":"Krystian Kazaniecki, Michał Wojciechowski","doi":"10.1007/s11118-024-10124-w","DOIUrl":null,"url":null,"abstract":"<p>We study properties of the boundary trace operator on the Sobolev space <span>\\(W^1_1(\\Omega )\\)</span>. Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. <b>222</b>(1), 1-14 2016), we define a surjective operator <span>\\(Tr: W^1_1(\\Omega _K)\\rightarrow X(\\Omega _K)\\)</span>, where <span>\\(\\Omega _K\\)</span> is von Koch’s snowflake and <span>\\(X(\\Omega _K)\\)</span> is a trace space with the quotient norm. Since <span>\\(\\Omega _K\\)</span> is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to <i>Tr</i>, i.e. a linear operator <span>\\(S: X(\\Omega _K) \\rightarrow W^1_1(\\Omega _K)\\)</span> such that <span>\\(Tr \\circ S= Id_{X(\\Omega _K)}\\)</span>. In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as <span>\\(\\ell _1\\)</span>. As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue <b>2</b>, 277-282 1979) about non-existence of the right inverse for domain <span>\\(\\Omega \\)</span> with regular boundary, which explains Banach space geometry cause for this phenomenon.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10124-w","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study properties of the boundary trace operator on the Sobolev space \(W^1_1(\Omega )\). Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. 222(1), 1-14 2016), we define a surjective operator \(Tr: W^1_1(\Omega _K)\rightarrow X(\Omega _K)\), where \(\Omega _K\) is von Koch’s snowflake and \(X(\Omega _K)\) is a trace space with the quotient norm. Since \(\Omega _K\) is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to Tr, i.e. a linear operator \(S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)\) such that \(Tr \circ S= Id_{X(\Omega _K)}\). In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as \(\ell _1\). As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue 2, 277-282 1979) about non-existence of the right inverse for domain \(\Omega \) with regular boundary, which explains Banach space geometry cause for this phenomenon.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.