Trace Operator on von Koch’s Snowflake

IF 1 3区 数学 Q1 MATHEMATICS
Krystian Kazaniecki, Michał Wojciechowski
{"title":"Trace Operator on von Koch’s Snowflake","authors":"Krystian Kazaniecki, Michał Wojciechowski","doi":"10.1007/s11118-024-10124-w","DOIUrl":null,"url":null,"abstract":"<p>We study properties of the boundary trace operator on the Sobolev space <span>\\(W^1_1(\\Omega )\\)</span>. Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. <b>222</b>(1), 1-14 2016), we define a surjective operator <span>\\(Tr: W^1_1(\\Omega _K)\\rightarrow X(\\Omega _K)\\)</span>, where <span>\\(\\Omega _K\\)</span> is von Koch’s snowflake and <span>\\(X(\\Omega _K)\\)</span> is a trace space with the quotient norm. Since <span>\\(\\Omega _K\\)</span> is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to <i>Tr</i>, i.e. a linear operator <span>\\(S: X(\\Omega _K) \\rightarrow W^1_1(\\Omega _K)\\)</span> such that <span>\\(Tr \\circ S= Id_{X(\\Omega _K)}\\)</span>. In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as <span>\\(\\ell _1\\)</span>. As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue <b>2</b>, 277-282 1979) about non-existence of the right inverse for domain <span>\\(\\Omega \\)</span> with regular boundary, which explains Banach space geometry cause for this phenomenon.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"92 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10124-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We study properties of the boundary trace operator on the Sobolev space \(W^1_1(\Omega )\). Using the density result by Koskela and Zhang (Arch. Ration. Mech. Anal. 222(1), 1-14 2016), we define a surjective operator \(Tr: W^1_1(\Omega _K)\rightarrow X(\Omega _K)\), where \(\Omega _K\) is von Koch’s snowflake and \(X(\Omega _K)\) is a trace space with the quotient norm. Since \(\Omega _K\) is a uniform domain whose boundary is Ahlfors-regular with an exponent strictly bigger than one, it was shown by L. Malý (2017) that there exists a right inverse to Tr, i.e. a linear operator \(S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)\) such that \(Tr \circ S= Id_{X(\Omega _K)}\). In this paper we provide a different, purely combinatorial proof based on geometrical structure of von Koch’s snowflake. Moreover we identify the isomorphism class of the trace space as \(\ell _1\). As an additional consequence of our approach we obtain a simple proof of the Peetre’s theorem (Special Issue 2, 277-282 1979) about non-existence of the right inverse for domain \(\Omega \) with regular boundary, which explains Banach space geometry cause for this phenomenon.

Abstract Image

冯-科赫雪花上的微量运算符
我们研究 Sobolev 空间 \(W^1_1(\Omega )\) 上边界迹算子的性质。利用 Koskela 和 Zhang 的密度结果(Arch.Ration.Mech.Anal.222(1), 1-14 2016),我们定义了一个弹射算子 (Tr:W^1_1(\Omega _K)\rightarrow X(\Omega_K)\),其中 \(\Omega _K\)是冯-科赫的雪花,而 \(X(\Omega_K)\)是具有商规范的迹空间。由于 \(\Omega _K\) 是一个均匀域,其边界是指数严格大于 1 的阿福规则域,因此 L. Malý (2017)证明存在一个 Tr 的右逆,即一个线性算子 \(S: X(\Omega _K) \rightarrow W^1_1(\Omega _K)\) ,使得 \(Tr \circ S= Id_{X(\Omega _K)}\).在本文中,我们基于 von Koch 雪花的几何结构,提供了一个不同的、纯粹的组合证明。此外,我们把迹空间的同构类确定为 \(\ell _1\)。作为我们方法的额外结果,我们得到了关于具有规则边界的域\(\Omega \)不存在右逆的皮特尔定理(特刊 2, 277-282 1979)的一个简单证明,它解释了巴拿赫空间几何造成这一现象的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信