The Complexity of Inversion in Groups

IF 0.4 3区 数学 Q4 LOGIC
P. E. Alaev
{"title":"The Complexity of Inversion in Groups","authors":"P. E. Alaev","doi":"10.1007/s10469-024-09730-9","DOIUrl":null,"url":null,"abstract":"<p>We prove that if <span>\\(\\mathcal{A}\\)</span> = (<i>A</i>,⋅) is a group computable in polynomial time (P-computable), then there exists a P-computable group <span>\\(\\mathcal{B}\\)</span> = (<i>B</i>,∙) ≅ <span>\\(\\mathcal{A},\\)</span> in which the operation <i>x</i><sup>−1</sup> is also <i>P-</i>computable. On the other hand, we show that if the center <span>\\(Z\\left(\\mathcal{A}\\right)\\)</span> of a group A contains an element of infinite order, then under some additional assumptions, there exists a P-computable group <span>\\({\\mathcal{B}}{\\prime}=\\left({B}{\\prime},\\cdot \\right)\\cong \\mathcal{A}\\)</span> in which the operation <i>x</i><sup><i>−</i>1</sup> is not primitive recursive. Also the following general fact in the theory of P-computable structures is stated: if <span>\\(\\mathcal{A}\\)</span> is a P-computable structure and <i>E</i> ⊆ <i>A</i><sup>2</sup> is a P-computable congruence on <span>\\(\\mathcal{A},\\)</span> then the quotient structure <span>\\(\\mathcal{A}/E\\)</span> is isomorphic to a P-computable structure.</p>","PeriodicalId":7422,"journal":{"name":"Algebra and Logic","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra and Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10469-024-09730-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that if \(\mathcal{A}\) = (A,⋅) is a group computable in polynomial time (P-computable), then there exists a P-computable group \(\mathcal{B}\) = (B,∙) ≅ \(\mathcal{A},\) in which the operation x−1 is also P-computable. On the other hand, we show that if the center \(Z\left(\mathcal{A}\right)\) of a group A contains an element of infinite order, then under some additional assumptions, there exists a P-computable group \({\mathcal{B}}{\prime}=\left({B}{\prime},\cdot \right)\cong \mathcal{A}\) in which the operation x1 is not primitive recursive. Also the following general fact in the theory of P-computable structures is stated: if \(\mathcal{A}\) is a P-computable structure and EA2 is a P-computable congruence on \(\mathcal{A},\) then the quotient structure \(\mathcal{A}/E\) is isomorphic to a P-computable structure.

群体反转的复杂性
我们证明,如果 \(\mathcal{A}\) = (A,⋅) 是一个可以在多项式时间内计算(P-可计算)的群,那么存在一个 P-可计算的群\(\mathcal{B}\) = (B,∙) ≅ \(\mathcal{A},\),其中的运算 x-1 也是 P-可计算的。另一方面,我们证明了如果一个群 A 的中心 \(Z\left(\mathcal{A}\right)\) 包含一个无穷阶元素,那么在一些附加假设下,存在一个 P 可计算群 \({\mathcal{B}}{prime}=\left({B}{prime},\cdot \right)\cong\mathcal{A}\),其中的运算 x-1 不是原始递归的。在可P计算结构理论中还有如下一般事实:如果\(\mathcal{A}\)是一个可P计算结构,并且E ⊆ A2是\(\mathcal{A},\)上的一个可P计算同余式,那么商结构\(\mathcal{A}/E\) 与一个可P计算结构同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra and Logic
Algebra and Logic 数学-数学
CiteScore
1.10
自引率
20.00%
发文量
26
审稿时长
>12 weeks
期刊介绍: This bimonthly journal publishes results of the latest research in the areas of modern general algebra and of logic considered primarily from an algebraic viewpoint. The algebraic papers, constituting the major part of the contents, are concerned with studies in such fields as ordered, almost torsion-free, nilpotent, and metabelian groups; isomorphism rings; Lie algebras; Frattini subgroups; and clusters of algebras. In the area of logic, the periodical covers such topics as hierarchical sets, logical automata, and recursive functions. Algebra and Logic is a translation of ALGEBRA I LOGIKA, a publication of the Siberian Fund for Algebra and Logic and the Institute of Mathematics of the Siberian Branch of the Russian Academy of Sciences. All articles are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信