Results on the Growth of Meromorphic Solutions of some Functional Equations of Painlevé and Schröder Type in Ultrametric Fields

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Houda Boughaba, Salih Bouternikh, Tahar Zerzaihi
{"title":"Results on the Growth of Meromorphic Solutions of some Functional Equations of Painlevé and Schröder Type in Ultrametric Fields","authors":"Houda Boughaba, Salih Bouternikh, Tahar Zerzaihi","doi":"10.1134/s2070046624010023","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> Let <span>\\(\\mathbb{K}\\)</span> be a complete ultrametric algebraically closed field of characteristic zero and let <span>\\(\\mathcal{M}(\\mathbb{K})\\)</span> be the field of meromorphic functions in all <span>\\(\\mathbb{K}\\)</span>. In this paper, we investigate the growth of meromorphic solutions of some difference and <span>\\(q\\)</span>-difference equations. We obtain some results on the growth of meromorphic solutions when the coefficients in such equations are rational functions. </p>","PeriodicalId":44654,"journal":{"name":"P-Adic Numbers Ultrametric Analysis and Applications","volume":"14 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"P-Adic Numbers Ultrametric Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s2070046624010023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\mathbb{K}\) be a complete ultrametric algebraically closed field of characteristic zero and let \(\mathcal{M}(\mathbb{K})\) be the field of meromorphic functions in all \(\mathbb{K}\). In this paper, we investigate the growth of meromorphic solutions of some difference and \(q\)-difference equations. We obtain some results on the growth of meromorphic solutions when the coefficients in such equations are rational functions.

关于超对称场中某些潘勒夫和施罗德函数方程的同态解增长的结果
摘要 让 \(\mathbb{K}\) 是特征为零的完全超对称代数封闭域,让 \(\mathcal{M}(\mathbb{K})\) 是所有 \(\mathbb{K}\) 中的非定常函数域。本文研究了一些差分方程和 \(q\)-difference 方程中的微函数解的增长。当这些方程中的系数为有理函数时,我们得到了一些关于微形态解增长的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
P-Adic Numbers Ultrametric Analysis and Applications
P-Adic Numbers Ultrametric Analysis and Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
1.10
自引率
20.00%
发文量
16
期刊介绍: This is a new international interdisciplinary journal which contains original articles, short communications, and reviews on progress in various areas of pure and applied mathematics related with p-adic, adelic and ultrametric methods, including: mathematical physics, quantum theory, string theory, cosmology, nanoscience, life sciences; mathematical analysis, number theory, algebraic geometry, non-Archimedean and non-commutative geometry, theory of finite fields and rings, representation theory, functional analysis and graph theory; classical and quantum information, computer science, cryptography, image analysis, cognitive models, neural networks and bioinformatics; complex systems, dynamical systems, stochastic processes, hierarchy structures, modeling, control theory, economics and sociology; mesoscopic and nano systems, disordered and chaotic systems, spin glasses, macromolecules, molecular dynamics, biopolymers, genomics and biology; and other related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信