S$Ω$I: Score-based O-INFORMATION Estimation

Mustapha Bounoua, Giulio Franzese, Pietro Michiardi
{"title":"S$Ω$I: Score-based O-INFORMATION Estimation","authors":"Mustapha Bounoua, Giulio Franzese, Pietro Michiardi","doi":"arxiv-2402.05667","DOIUrl":null,"url":null,"abstract":"The analysis of scientific data and complex multivariate systems requires\ninformation quantities that capture relationships among multiple random\nvariables. Recently, new information-theoretic measures have been developed to\novercome the shortcomings of classical ones, such as mutual information, that\nare restricted to considering pairwise interactions. Among them, the concept of\ninformation synergy and redundancy is crucial for understanding the high-order\ndependencies between variables. One of the most prominent and versatile\nmeasures based on this concept is O-information, which provides a clear and\nscalable way to quantify the synergy-redundancy balance in multivariate\nsystems. However, its practical application is limited to simplified cases. In\nthis work, we introduce S$\\Omega$I, which allows for the first time to compute\nO-information without restrictive assumptions about the system. Our experiments\nvalidate our approach on synthetic data, and demonstrate the effectiveness of\nS$\\Omega$I in the context of a real-world use case.","PeriodicalId":501433,"journal":{"name":"arXiv - CS - Information Theory","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.05667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The analysis of scientific data and complex multivariate systems requires information quantities that capture relationships among multiple random variables. Recently, new information-theoretic measures have been developed to overcome the shortcomings of classical ones, such as mutual information, that are restricted to considering pairwise interactions. Among them, the concept of information synergy and redundancy is crucial for understanding the high-order dependencies between variables. One of the most prominent and versatile measures based on this concept is O-information, which provides a clear and scalable way to quantify the synergy-redundancy balance in multivariate systems. However, its practical application is limited to simplified cases. In this work, we introduce S$\Omega$I, which allows for the first time to compute O-information without restrictive assumptions about the system. Our experiments validate our approach on synthetic data, and demonstrate the effectiveness of S$\Omega$I in the context of a real-world use case.
S$Ω$I:基于分数的 O-INFORMATION 估算
分析科学数据和复杂的多变量系统需要能捕捉多个随机变量之间关系的信息量。最近,人们开发了新的信息论度量,以克服经典度量(如互信息)仅限于考虑成对交互作用的缺点。其中,信息协同和冗余的概念对于理解变量之间的高阶依赖关系至关重要。基于这一概念的最突出、最通用的测量方法之一是 O-信息,它为量化多变量系统中的协同-冗余平衡提供了一种清晰、可扩展的方法。然而,它的实际应用仅限于简化的情况。在这项工作中,我们引入了 S$\Omega$I,它首次允许在不对系统进行限制性假设的情况下计算 O-信息。我们的实验在合成数据上验证了我们的方法,并证明了 S$\Omega$I 在实际应用中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信