Dynamic synthetic analysis of circulation field of tropical cyclones affecting Shanghai

IF 1.8 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Wen Gu, Caijun Yue, Zhihui Han, Yanqing Gao, Yuqi Tang, Xiangyu Ao, Yao Yao
{"title":"Dynamic synthetic analysis of circulation field of tropical cyclones affecting Shanghai","authors":"Wen Gu, Caijun Yue, Zhihui Han, Yanqing Gao, Yuqi Tang, Xiangyu Ao, Yao Yao","doi":"10.1007/s11707-022-1046-6","DOIUrl":null,"url":null,"abstract":"<p>Eleven tropical cyclones (TCs) affected Shanghai and crossed the same latitude as Shanghai from 2007 to 2018. According to similar tracks from best-track data, TCs that cause significant precipitation in Shanghai can be divided into three types: landfall TCs, nearshore northward TCs, and western TCs. Based on ERA5 reanalysis data, the dynamic synthesis method was used to synthesize TC circulation situations to compare thermal, dynamic, water vapor, and stability conditions within TC circulations during the period when they affected Shanghai. The conclusions are as follows. 1) When the three TC types are at the same latitude as Shanghai, they are all in the divergent field in the upper troposphere. For the landfall type, the subtropical high at 500 hPa is stronger and farther north than usual, and there is a high-pressure dam on the north side of the TCs. 2) The warm advection of the three TC types at 925 hPa is located in the northern quadrant of the TCs. The dynamic and water vapor conditions are good in the north-western quadrant of landfall and western TCs, and more favorable in the eastern quadrant of nearshore northward TCs. 3) The favorable effects of all three types on precipitation in Shanghai come from the boundary layer. Water vapor, upward motion, and instability conditions of landfall TCs are superior to the other two TC types. The best water vapor, dynamic, and convective instability conditions are at the northern boundary in Shanghai during landfall TCs, and the main sources of water vapor in Shanghai come from the eastern and northern boundaries. During nearshore northward TCs, the main contribution to precipitation is from the eastern boundary, while better dynamic and water vapor conditions come from the western and northern boundaries during western TCs. The above findings provide scientific and technical support for operational forecasting precipitation from TCs affecting mega-cities.</p>","PeriodicalId":48927,"journal":{"name":"Frontiers of Earth Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11707-022-1046-6","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Eleven tropical cyclones (TCs) affected Shanghai and crossed the same latitude as Shanghai from 2007 to 2018. According to similar tracks from best-track data, TCs that cause significant precipitation in Shanghai can be divided into three types: landfall TCs, nearshore northward TCs, and western TCs. Based on ERA5 reanalysis data, the dynamic synthesis method was used to synthesize TC circulation situations to compare thermal, dynamic, water vapor, and stability conditions within TC circulations during the period when they affected Shanghai. The conclusions are as follows. 1) When the three TC types are at the same latitude as Shanghai, they are all in the divergent field in the upper troposphere. For the landfall type, the subtropical high at 500 hPa is stronger and farther north than usual, and there is a high-pressure dam on the north side of the TCs. 2) The warm advection of the three TC types at 925 hPa is located in the northern quadrant of the TCs. The dynamic and water vapor conditions are good in the north-western quadrant of landfall and western TCs, and more favorable in the eastern quadrant of nearshore northward TCs. 3) The favorable effects of all three types on precipitation in Shanghai come from the boundary layer. Water vapor, upward motion, and instability conditions of landfall TCs are superior to the other two TC types. The best water vapor, dynamic, and convective instability conditions are at the northern boundary in Shanghai during landfall TCs, and the main sources of water vapor in Shanghai come from the eastern and northern boundaries. During nearshore northward TCs, the main contribution to precipitation is from the eastern boundary, while better dynamic and water vapor conditions come from the western and northern boundaries during western TCs. The above findings provide scientific and technical support for operational forecasting precipitation from TCs affecting mega-cities.

影响上海的热带气旋环流场动态合成分析
从2007年到2018年,共有11个热带气旋(TC)影响上海并穿过上海同纬度地区。根据最佳路径资料的相似轨迹,造成上海明显降水的TC可分为登陆型TC、近岸北上型TC和西部型TC三种类型。基于ERA5再分析资料,采用动态合成法合成TC环流情况,比较TC影响上海期间TC环流内部的热力、动力、水汽和稳定性条件。结论如下1) 当三种类型的TC与上海处于同一纬度时,它们都处于对流层高层的发散场中。就登陆型而言,500 hPa处的副热带高气压较常年偏强、偏北,TC北侧有高压坝;就登陆型而言,500 hPa处的副热带高气压较常年偏强、偏北,TC北侧有高压坝。2)三种TC类型在925 hPa的暖平流位于TC的北象限。在登陆TC和西部TC的西北象限,动力和水汽条件较好,而在近岸偏北TC的东象限,动力和水汽条件更为有利。3) 三种类型对上海降水的有利影响都来自边界层。登陆TC的水汽、上升运动和不稳定条件优于其他两种TC。在登陆型TC期间,上海北部边界的水汽、动力和对流不稳定条件最好,上海的水汽主要来自东部和北部边界。在近岸偏北TC期间,降水主要来自东部边界,而在西部TC期间,较好的动力和水汽条件来自西部和北部边界。上述研究结果为影响特大城市的TC降水实况预报提供了科技支撑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers of Earth Science
Frontiers of Earth Science GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.50
自引率
5.00%
发文量
627
期刊介绍: Frontiers of Earth Science publishes original, peer-reviewed, theoretical and experimental frontier research papers as well as significant review articles of more general interest to earth scientists. The journal features articles dealing with observations, patterns, processes, and modeling of both innerspheres (including deep crust, mantle, and core) and outerspheres (including atmosphere, hydrosphere, and biosphere) of the earth. Its aim is to promote communication and share knowledge among the international earth science communities
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信