{"title":"Existence of Optimal Shapes in Parabolic Bilinear Optimal Control Problems","authors":"Idriss Mazari-Fouquer","doi":"10.1007/s00205-024-01958-0","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this paper is to prove the existence of optimal shapes in bilinear parabolic optimal control problems. We consider a parabolic equation <span>\\(\\partial _tu_m-\\Delta u_m=f(t,x,u_m)+mu_m\\)</span>. The set of admissible controls is given by <span>\\(A=\\{m\\in L^\\infty \\,, m_-\\leqq m\\leqq m_+{\\text { almost everywhere, }}\\int _\\Omega m(t,\\cdot )=V_1(t)\\}\\)</span>, where <span>\\(m_\\pm =m_\\pm (t,x)\\)</span> are two reference functions in <span>\\(L^\\infty ({(0,T)\\times {\\Omega }})\\)</span>, and where <span>\\(V_1=V_1(t)\\)</span> is a reference integral constraint. The functional to optimise is <span>\\(J:m\\mapsto \\iint _{(0,T)\\times {\\Omega }} j_1(u_m)+\\int _{\\Omega }j_2(u_m(T))\\)</span>. Roughly speaking, we prove that, if <span>\\(j_1\\)</span> and <span>\\(j_2\\)</span> are non-decreasing and if one is increasing, then any solution of <span>\\(\\max _A J\\)</span> is bang-bang: any optimal <span>\\(m^*\\)</span> writes <span>\\(m^*=\\mathbb {1}_E m_-+\\mathbb {1}_{E^c}m_+\\)</span> for some <span>\\(E\\subset {(0,T)\\times {\\Omega }}\\)</span>. From the point of view of shape optimization, this is a parabolic analog of the Buttazzo-Dal Maso theorem in shape optimisation. The proof is based on second-order criteria and on an approximation-localisation procedure for admissible perturbations. This last part uses the theory of parabolic equations with measure data.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-01958-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to prove the existence of optimal shapes in bilinear parabolic optimal control problems. We consider a parabolic equation \(\partial _tu_m-\Delta u_m=f(t,x,u_m)+mu_m\). The set of admissible controls is given by \(A=\{m\in L^\infty \,, m_-\leqq m\leqq m_+{\text { almost everywhere, }}\int _\Omega m(t,\cdot )=V_1(t)\}\), where \(m_\pm =m_\pm (t,x)\) are two reference functions in \(L^\infty ({(0,T)\times {\Omega }})\), and where \(V_1=V_1(t)\) is a reference integral constraint. The functional to optimise is \(J:m\mapsto \iint _{(0,T)\times {\Omega }} j_1(u_m)+\int _{\Omega }j_2(u_m(T))\). Roughly speaking, we prove that, if \(j_1\) and \(j_2\) are non-decreasing and if one is increasing, then any solution of \(\max _A J\) is bang-bang: any optimal \(m^*\) writes \(m^*=\mathbb {1}_E m_-+\mathbb {1}_{E^c}m_+\) for some \(E\subset {(0,T)\times {\Omega }}\). From the point of view of shape optimization, this is a parabolic analog of the Buttazzo-Dal Maso theorem in shape optimisation. The proof is based on second-order criteria and on an approximation-localisation procedure for admissible perturbations. This last part uses the theory of parabolic equations with measure data.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.