{"title":"Dependent Task Scheduling Using Parallel Deep Neural Networks in Mobile Edge Computing","authors":"Sheng Chai, Jimmy Huang","doi":"10.1007/s10723-024-09744-8","DOIUrl":null,"url":null,"abstract":"<p>Conventional detection techniques aimed at intelligent devices rely primarily on deep learning algorithms, which, despite their high precision, are hindered by significant computer power and energy requirements. This work proposes a novel solution to these constraints using mobile edge computing (MEC). We present the Dependent Task-Offloading technique (DTOS), a deep reinforcement learning-based technique for optimizing task offloading to numerous heterogeneous edge servers in intelligent prosthesis applications. By expressing the task offloading problem as a Markov decision process, DTOS addresses the dual challenge of lowering network service latency and power utilisation. DTOS employs a weighted sum optimisation method in this approach to find the best policy. The technique uses parallel deep neural networks (DNNs), which not only create offloading possibilities but also cache the most successful options for further iterations. Furthermore, the DTOS modifies DNN variables using a prioritized experience replay method, which improves learning by focusing on valuable experiences. The use of DTOS in a real-world MEC scenario, where a deep learning-based movement intent detection algorithm is deployed on intelligent prostheses, demonstrates its applicability and effectiveness. The experimental results show that DTOS consistently makes optimal decisions in work offloading and planning, demonstrating its potential to improve the operational efficiency of intelligent prostheses significantly. Thus, the study introduces a novel approach that combines the characteristics of deep reinforcement learning with MEC, demonstrating a substantial development in the field of intelligent prostheses through optimal task offloading and reduced resource usage.</p>","PeriodicalId":54817,"journal":{"name":"Journal of Grid Computing","volume":"19 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Grid Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10723-024-09744-8","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional detection techniques aimed at intelligent devices rely primarily on deep learning algorithms, which, despite their high precision, are hindered by significant computer power and energy requirements. This work proposes a novel solution to these constraints using mobile edge computing (MEC). We present the Dependent Task-Offloading technique (DTOS), a deep reinforcement learning-based technique for optimizing task offloading to numerous heterogeneous edge servers in intelligent prosthesis applications. By expressing the task offloading problem as a Markov decision process, DTOS addresses the dual challenge of lowering network service latency and power utilisation. DTOS employs a weighted sum optimisation method in this approach to find the best policy. The technique uses parallel deep neural networks (DNNs), which not only create offloading possibilities but also cache the most successful options for further iterations. Furthermore, the DTOS modifies DNN variables using a prioritized experience replay method, which improves learning by focusing on valuable experiences. The use of DTOS in a real-world MEC scenario, where a deep learning-based movement intent detection algorithm is deployed on intelligent prostheses, demonstrates its applicability and effectiveness. The experimental results show that DTOS consistently makes optimal decisions in work offloading and planning, demonstrating its potential to improve the operational efficiency of intelligent prostheses significantly. Thus, the study introduces a novel approach that combines the characteristics of deep reinforcement learning with MEC, demonstrating a substantial development in the field of intelligent prostheses through optimal task offloading and reduced resource usage.
期刊介绍:
Grid Computing is an emerging technology that enables large-scale resource sharing and coordinated problem solving within distributed, often loosely coordinated groups-what are sometimes termed "virtual organizations. By providing scalable, secure, high-performance mechanisms for discovering and negotiating access to remote resources, Grid technologies promise to make it possible for scientific collaborations to share resources on an unprecedented scale, and for geographically distributed groups to work together in ways that were previously impossible. Similar technologies are being adopted within industry, where they serve as important building blocks for emerging service provider infrastructures.
Even though the advantages of this technology for classes of applications have been acknowledged, research in a variety of disciplines, including not only multiple domains of computer science (networking, middleware, programming, algorithms) but also application disciplines themselves, as well as such areas as sociology and economics, is needed to broaden the applicability and scope of the current body of knowledge.