Recoverability of quantum channels via hypothesis testing

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Anna Jenčová
{"title":"Recoverability of quantum channels via hypothesis testing","authors":"Anna Jenčová","doi":"10.1007/s11005-024-01775-2","DOIUrl":null,"url":null,"abstract":"<div><p>A quantum channel is sufficient with respect to a set of input states if it can be reversed on this set. In the approximate version, the input states can be recovered within an error bounded by the decrease of the relative entropy under the channel. Using a new integral representation of the relative entropy in Frenkel (Integral formula for quantum relative entropy implies data processing inequality, Quantum <b>7</b>, 1102 (2023)), we present an easy proof of a characterization of sufficient quantum channels and recoverability by preservation of optimal success probabilities in hypothesis testing problems, equivalently, by preservation of <span>\\(L_1\\)</span>-distance.\n</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11005-024-01775-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01775-2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A quantum channel is sufficient with respect to a set of input states if it can be reversed on this set. In the approximate version, the input states can be recovered within an error bounded by the decrease of the relative entropy under the channel. Using a new integral representation of the relative entropy in Frenkel (Integral formula for quantum relative entropy implies data processing inequality, Quantum 7, 1102 (2023)), we present an easy proof of a characterization of sufficient quantum channels and recoverability by preservation of optimal success probabilities in hypothesis testing problems, equivalently, by preservation of \(L_1\)-distance.

通过假设检验恢复量子信道的可恢复性
如果一个量子信道可以在一组输入状态上逆转,那么它对于这组输入状态就是充分的。在近似版本中,输入状态可以在误差范围内恢复,误差以通道下相对熵的减小为界。利用弗伦克尔相对熵的新积分表示法(《量子相对熵的积分公式意味着数据处理不等式》,Quantum 7, 1102 (2023)),我们通过假设检验问题中最优成功概率的保持,等价地,通过 \(L_1\)-distance 的保持,简便地证明了充分量子信道和可恢复性的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信