Signature volatility models: pricing and hedging with Fourier

Eduardo Abi Jaber, Louis-Amand Gérard
{"title":"Signature volatility models: pricing and hedging with Fourier","authors":"Eduardo Abi Jaber, Louis-Amand Gérard","doi":"arxiv-2402.01820","DOIUrl":null,"url":null,"abstract":"We consider a stochastic volatility model where the dynamics of the\nvolatility are given by a possibly infinite linear combination of the elements\nof the time extended signature of a Brownian motion. First, we show that the\nmodel is remarkably universal, as it includes, but is not limited to, the\ncelebrated Stein-Stein, Bergomi, and Heston models, together with some\npath-dependent variants. Second, we derive the joint characteristic functional\nof the log-price and integrated variance provided that some infinite\ndimensional extended tensor algebra valued Riccati equation admits a solution.\nThis allows us to price and (quadratically) hedge certain European and\npath-dependent options using Fourier inversion techniques. We highlight the\nefficiency and accuracy of these Fourier techniques in a comprehensive\nnumerical study.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2402.01820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a stochastic volatility model where the dynamics of the volatility are given by a possibly infinite linear combination of the elements of the time extended signature of a Brownian motion. First, we show that the model is remarkably universal, as it includes, but is not limited to, the celebrated Stein-Stein, Bergomi, and Heston models, together with some path-dependent variants. Second, we derive the joint characteristic functional of the log-price and integrated variance provided that some infinite dimensional extended tensor algebra valued Riccati equation admits a solution. This allows us to price and (quadratically) hedge certain European and path-dependent options using Fourier inversion techniques. We highlight the efficiency and accuracy of these Fourier techniques in a comprehensive numerical study.
特征波动模型:用傅立叶定价和对冲
我们考虑了一个随机波动率模型,在这个模型中,波动率的动态是由布朗运动的时间扩展特征元素的可能无限线性组合给出的。首先,我们证明该模型具有显著的普遍性,因为它包括但不限于著名的 Stein-Stein、Bergomi 和 Heston 模型,以及一些依赖路径的变体。其次,我们推导出了对数价格和综合方差的联合特征函数,条件是某些无穷维扩展张量代数值里卡提方程允许有一个解。这使我们能够利用傅立叶反演技术对某些欧式期权和路径依赖期权进行定价和(二次)对冲。通过全面的数值研究,我们强调了这些傅立叶技术的效率和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信