{"title":"Fertilization Methods Effect Spring Wheat Yield and Soil CH4 Fluxes in the Loess Plateau of China","authors":"Lijuan Yan, Jiangqi Wu, Haiyan Wang, Jianyu Yuan","doi":"10.1007/s42106-024-00281-8","DOIUrl":null,"url":null,"abstract":"<p>Dryland agricultural soils are recognized as significant sites of methane (CH<sub>4</sub>) absorption, making them integral to the global CH<sub>4</sub> budget. Nitrogen fertilization is commonly used by growers in these regions to obtain optimal wheat yields, but it is unclear how various methods may affect CH<sub>4</sub> absorption. Therefore, we conducted two years of field studies in the rain-fed agricultural experimental station in the semi-arid Loess Plateau in northwest China to test how four fertilization methods altered different crop and soil characteristics. Plots consisted of a popular spring wheat variety treated with either no fertilizer (CK), nitrogen fertilizer (N), organic manure (M), or a combination of nitrogen and organic manure (NM). We analyzed the effects each fertilization methods had on both yield and soil CH<sub>4</sub> flux. The results indicated that these soils act as a net sink of CH<sub>4</sub>. The NM treatment significantly increased wheat yield, while the N treatment significantly reduced CH<sub>4</sub> absorption. Furthermore, soil CH<sub>4</sub> absorption under each treatment had a clear temporal pattern, which peaked during the flowering stage. Our principal component analysis and linear regression analysis illustrated how CH<sub>4</sub> fluxes were significantly positively or negatively correlated with soil total nitrogen, nitrate nitrogen, and temperature (<i>P</i> < 0.05), potentially explaining 40% of the CH<sub>4</sub> variability. In conclusion, our results indicate that the co-application of nitrogen and organic manure can both support optimal wheat yield and effectively reduce the risk of CH<sub>4</sub> emissions.</p>","PeriodicalId":54947,"journal":{"name":"International Journal of Plant Production","volume":"12 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant Production","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s42106-024-00281-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Dryland agricultural soils are recognized as significant sites of methane (CH4) absorption, making them integral to the global CH4 budget. Nitrogen fertilization is commonly used by growers in these regions to obtain optimal wheat yields, but it is unclear how various methods may affect CH4 absorption. Therefore, we conducted two years of field studies in the rain-fed agricultural experimental station in the semi-arid Loess Plateau in northwest China to test how four fertilization methods altered different crop and soil characteristics. Plots consisted of a popular spring wheat variety treated with either no fertilizer (CK), nitrogen fertilizer (N), organic manure (M), or a combination of nitrogen and organic manure (NM). We analyzed the effects each fertilization methods had on both yield and soil CH4 flux. The results indicated that these soils act as a net sink of CH4. The NM treatment significantly increased wheat yield, while the N treatment significantly reduced CH4 absorption. Furthermore, soil CH4 absorption under each treatment had a clear temporal pattern, which peaked during the flowering stage. Our principal component analysis and linear regression analysis illustrated how CH4 fluxes were significantly positively or negatively correlated with soil total nitrogen, nitrate nitrogen, and temperature (P < 0.05), potentially explaining 40% of the CH4 variability. In conclusion, our results indicate that the co-application of nitrogen and organic manure can both support optimal wheat yield and effectively reduce the risk of CH4 emissions.
期刊介绍:
IJPP publishes original research papers and review papers related to physiology, ecology and production of field crops and forages at field, farm and landscape level. Preferred topics are: (1) yield gap in cropping systems: estimation, causes and closing measures, (2) ecological intensification of plant production, (3) improvement of water and nutrients management in plant production systems, (4) environmental impact of plant production, (5) climate change and plant production, and (6) responses of plant communities to extreme weather conditions.
Please note that IJPP does not publish papers with a background in genetics and plant breeding, plant molecular biology, plant biotechnology, as well as soil science, meteorology, product process and post-harvest management unless they are strongly related to plant production under field conditions.
Papers based on limited data or of local importance, and results from routine experiments will not normally be considered for publication. Field experiments should include at least two years and/or two environments. Papers on plants other than field crops and forages, and papers based on controlled-environment experiments will not be considered.