Discrete duality finite volume scheme for a generalized Joule heating problem

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mustapha Bahari, El-Houssaine Quenjel, Mohamed Rhoudaf
{"title":"Discrete duality finite volume scheme for a generalized Joule heating problem","authors":"Mustapha Bahari, El-Houssaine Quenjel, Mohamed Rhoudaf","doi":"10.1007/s10092-024-00566-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a <i>p</i>-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00566-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a p-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.

Abstract Image

广义焦耳加热问题的离散二元有限体积方案
本文构思并分析了非稳态广义热敏电阻问题的离散对偶有限体积(DDFV)方案,包括扩散的 p-Laplacian 和焦耳加热源。与连续环境下一样,离散模型设计的主要困难来自焦耳加热项。为了解决这个问题,焦耳加热项被一个等价键公式取代,并在此基础上构建了一个完全隐式方案。在建议的离散化中引入一个棘手的截止函数,我们就能恢复离散温度的能量估计值。这种方法的另一个特点是,我们摒弃了近似电动势的离散最大值原则,这在本质上对网格形状构成了限制性约束。然后,建立了耦合方案的离散解的存在性。同时还给出了紧凑性估计。在数据和网格的一般假设下,讨论了数值方案的收敛性。最后给出了数值结果,以显示所提方法的效率和准确性,以及所实施的非线性求解器的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信