{"title":"Discrete duality finite volume scheme for a generalized Joule heating problem","authors":"Mustapha Bahari, El-Houssaine Quenjel, Mohamed Rhoudaf","doi":"10.1007/s10092-024-00566-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a <i>p</i>-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10092-024-00566-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we conceive and analyze a discrete duality finite volume (DDFV) scheme for the unsteady generalized thermistor problem, including a p-Laplacian for the diffusion and a Joule heating source. As in the continuous setting, the main difficulty in the design of the discrete model comes from the Joule heating term. To cope with this issue, the Joule heating term is replaced with an equivalent key formulation on which a fully implicit scheme is constructed. Introducing a tricky cut-off function in the proposed discretization, we are able to recover the energy estimates on the discrete temperature. Another feature of this approach is that we dispense with the discrete maximum principle on the approximate electric potential, which in essence poses restrictive constraints on the mesh shape. Then, the existence of discrete solution to the coupled scheme is established. Compactness estimates are also shown. Under general assumptions on the data and meshes, the convergence of the numerical scheme is addressed. Numerical results are finally presented to show the efficiency and accuracy of the proposed methodology as well as the behavior of the implemented nonlinear solver.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.